Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230053467> ?p ?o ?g. }
- W4230053467 endingPage "416" @default.
- W4230053467 startingPage "383" @default.
- W4230053467 abstract "Sputtering of a target by energetic ions or recoil atoms is assumed to result from cascades of atomic collisions. The sputtering yield is calculated under the assumption of random slowing down in an infinite medium. An integrodifferential equation for the yield is developed from the general Boltzmann transport equation. Input quantities are the cross sections for ion-target and target-target collisions, and atomic binding energies. Solutions of the integral equation are given that are asymptotically exact in the limit of high ion energy as compared to atomic binding energies. Two main stages of the collision cascade have to be distinguished: first, the slowing down of the primary ion and all recoiling atoms that have comparable energies---these particles determine the spatial extent of the cascade; second, the creation and slowing down of low-energy recoils that constitute the major part of all atoms set in motion. The separation between the two stages is essentially complete in the limit of high ion energy, as far as the calculation of the sputtering yield is concerned. High-energy collisions are characterized by Thomas-Fermi-type cross sections, while a Born-Mayer-type cross section is applied in the low-energy region. Electronic stopping is included when necessary. The separation of the cascade into two distinct stages has the consequence that two characteristic depths are important for the qualitative understanding of the sputtering process. First, the scattering events that eventually lead to sputtering take place within a certain layer near the surface, the thickness of which depends on ion mass and energy and on ion-target geometry. In the elastic collision region, this thickness is a sizable fraction of the ion range. Second, the majority of sputtered particles originate from a very thin surface layer (ensuremath{sim}5 AA{}), because small energies dominate. The general sputtering-yield formula is applied to specific situations that are of interest for comparison with experiment. These include backsputtering of thick targets by ion beams at perpendicular and oblique incidence and ion energies above ensuremath{sim}100 eV, transmission sputtering of thin foils, sputtering by recoil atoms from $ensuremath{alpha}$-active atoms distributed homogeneously or inhomogeneously in a thick target, sputtering of fissionable specimens by fission fragments, and sputtering of specimens that are irradiated in the core of a reactor or bombarded with a neutron beam. There is good agreement with experimental results on polycrystalline targets within the estimated accuracy of the data and the input parameters entering the theory. There is no need for adjustable parameters in the usual sense, but specific experimental setups are discussed that allow independent checks or accurate determination of some input quantities." @default.
- W4230053467 created "2022-05-11" @default.
- W4230053467 creator A5085451085 @default.
- W4230053467 date "1969-08-10" @default.
- W4230053467 modified "2023-10-16" @default.
- W4230053467 title "Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets" @default.
- W4230053467 cites W1209978025 @default.
- W4230053467 cites W146683164 @default.
- W4230053467 cites W186945335 @default.
- W4230053467 cites W1963549980 @default.
- W4230053467 cites W1967004165 @default.
- W4230053467 cites W1968291220 @default.
- W4230053467 cites W1969244903 @default.
- W4230053467 cites W1970155197 @default.
- W4230053467 cites W1973248033 @default.
- W4230053467 cites W1973774448 @default.
- W4230053467 cites W1975317902 @default.
- W4230053467 cites W1976583507 @default.
- W4230053467 cites W1979663480 @default.
- W4230053467 cites W1983088006 @default.
- W4230053467 cites W1993654896 @default.
- W4230053467 cites W2001557811 @default.
- W4230053467 cites W2001752937 @default.
- W4230053467 cites W2001895270 @default.
- W4230053467 cites W2002024732 @default.
- W4230053467 cites W2003306134 @default.
- W4230053467 cites W2003448347 @default.
- W4230053467 cites W2005354185 @default.
- W4230053467 cites W2005858066 @default.
- W4230053467 cites W2006164033 @default.
- W4230053467 cites W2011919472 @default.
- W4230053467 cites W2013471267 @default.
- W4230053467 cites W2017353877 @default.
- W4230053467 cites W2018927851 @default.
- W4230053467 cites W2019134761 @default.
- W4230053467 cites W2022077023 @default.
- W4230053467 cites W2022468022 @default.
- W4230053467 cites W2027431212 @default.
- W4230053467 cites W2027549038 @default.
- W4230053467 cites W2031027139 @default.
- W4230053467 cites W2034917737 @default.
- W4230053467 cites W2035195989 @default.
- W4230053467 cites W2046091640 @default.
- W4230053467 cites W2051555566 @default.
- W4230053467 cites W2052643289 @default.
- W4230053467 cites W2054574563 @default.
- W4230053467 cites W2060951119 @default.
- W4230053467 cites W2065875727 @default.
- W4230053467 cites W2070795197 @default.
- W4230053467 cites W2072867625 @default.
- W4230053467 cites W2077527215 @default.
- W4230053467 cites W2079942393 @default.
- W4230053467 cites W2081978492 @default.
- W4230053467 cites W2083150806 @default.
- W4230053467 cites W2091950958 @default.
- W4230053467 cites W2092678831 @default.
- W4230053467 cites W2093866547 @default.
- W4230053467 cites W2094644811 @default.
- W4230053467 cites W2105391274 @default.
- W4230053467 cites W2113037401 @default.
- W4230053467 cites W2128105785 @default.
- W4230053467 cites W2137113409 @default.
- W4230053467 cites W2140592775 @default.
- W4230053467 cites W2162673638 @default.
- W4230053467 cites W2216543475 @default.
- W4230053467 cites W36181836 @default.
- W4230053467 cites W4245811276 @default.
- W4230053467 cites W960166421 @default.
- W4230053467 cites W2042883050 @default.
- W4230053467 doi "https://doi.org/10.1103/physrev.184.383" @default.
- W4230053467 hasPublicationYear "1969" @default.
- W4230053467 type Work @default.
- W4230053467 citedByCount "2805" @default.
- W4230053467 countsByYear W42300534672012 @default.
- W4230053467 countsByYear W42300534672013 @default.
- W4230053467 countsByYear W42300534672014 @default.
- W4230053467 countsByYear W42300534672015 @default.
- W4230053467 countsByYear W42300534672016 @default.
- W4230053467 countsByYear W42300534672017 @default.
- W4230053467 countsByYear W42300534672018 @default.
- W4230053467 countsByYear W42300534672019 @default.
- W4230053467 countsByYear W42300534672020 @default.
- W4230053467 countsByYear W42300534672021 @default.
- W4230053467 countsByYear W42300534672022 @default.
- W4230053467 countsByYear W42300534672023 @default.
- W4230053467 crossrefType "journal-article" @default.
- W4230053467 hasAuthorship W4230053467A5085451085 @default.
- W4230053467 hasConcept C121332964 @default.
- W4230053467 hasConcept C134121241 @default.
- W4230053467 hasConcept C145148216 @default.
- W4230053467 hasConcept C184779094 @default.
- W4230053467 hasConcept C185592680 @default.
- W4230053467 hasConcept C19067145 @default.
- W4230053467 hasConcept C191486275 @default.
- W4230053467 hasConcept C192562407 @default.
- W4230053467 hasConcept C22423302 @default.
- W4230053467 hasConcept C2776668124 @default.
- W4230053467 hasConcept C34146451 @default.