Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230097969> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4230097969 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens and hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesoscale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four-dimensional wind field inversion method that makes use of Gaussian process regression (GPR), which is a nonparametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as 1âd of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model hyperparameters. The latter GPR approach has been applied to a 24âh dataset and shown to compare well to previously used homogeneous and gradient methods. Small-scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20â50âkm. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies." @default.
- W4230097969 created "2022-05-11" @default.
- W4230097969 date "2021-03-27" @default.
- W4230097969 modified "2023-10-16" @default.
- W4230097969 title "Comment on amt-2021-40" @default.
- W4230097969 doi "https://doi.org/10.5194/amt-2021-40-cc1" @default.
- W4230097969 hasPublicationYear "2021" @default.
- W4230097969 type Work @default.
- W4230097969 citedByCount "0" @default.
- W4230097969 crossrefType "peer-review" @default.
- W4230097969 hasBestOaLocation W42300979691 @default.
- W4230097969 hasConcept C105795698 @default.
- W4230097969 hasConcept C106131492 @default.
- W4230097969 hasConcept C119857082 @default.
- W4230097969 hasConcept C127313418 @default.
- W4230097969 hasConcept C140779682 @default.
- W4230097969 hasConcept C153294291 @default.
- W4230097969 hasConcept C19499675 @default.
- W4230097969 hasConcept C205649164 @default.
- W4230097969 hasConcept C24552861 @default.
- W4230097969 hasConcept C31972630 @default.
- W4230097969 hasConcept C33923547 @default.
- W4230097969 hasConcept C39432304 @default.
- W4230097969 hasConcept C40382383 @default.
- W4230097969 hasConcept C41008148 @default.
- W4230097969 hasConcept C62649853 @default.
- W4230097969 hasConcept C81692654 @default.
- W4230097969 hasConceptScore W4230097969C105795698 @default.
- W4230097969 hasConceptScore W4230097969C106131492 @default.
- W4230097969 hasConceptScore W4230097969C119857082 @default.
- W4230097969 hasConceptScore W4230097969C127313418 @default.
- W4230097969 hasConceptScore W4230097969C140779682 @default.
- W4230097969 hasConceptScore W4230097969C153294291 @default.
- W4230097969 hasConceptScore W4230097969C19499675 @default.
- W4230097969 hasConceptScore W4230097969C205649164 @default.
- W4230097969 hasConceptScore W4230097969C24552861 @default.
- W4230097969 hasConceptScore W4230097969C31972630 @default.
- W4230097969 hasConceptScore W4230097969C33923547 @default.
- W4230097969 hasConceptScore W4230097969C39432304 @default.
- W4230097969 hasConceptScore W4230097969C40382383 @default.
- W4230097969 hasConceptScore W4230097969C41008148 @default.
- W4230097969 hasConceptScore W4230097969C62649853 @default.
- W4230097969 hasConceptScore W4230097969C81692654 @default.
- W4230097969 hasLocation W42300979691 @default.
- W4230097969 hasOpenAccess W4230097969 @default.
- W4230097969 hasPrimaryLocation W42300979691 @default.
- W4230097969 hasRelatedWork W1535046094 @default.
- W4230097969 hasRelatedWork W1998594686 @default.
- W4230097969 hasRelatedWork W2046716484 @default.
- W4230097969 hasRelatedWork W2065169402 @default.
- W4230097969 hasRelatedWork W2122717455 @default.
- W4230097969 hasRelatedWork W2325813215 @default.
- W4230097969 hasRelatedWork W3111381576 @default.
- W4230097969 hasRelatedWork W4205105455 @default.
- W4230097969 hasRelatedWork W599701392 @default.
- W4230097969 hasRelatedWork W849579726 @default.
- W4230097969 isParatext "false" @default.
- W4230097969 isRetracted "false" @default.
- W4230097969 workType "peer-review" @default.