Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230147780> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4230147780 abstract "<sec> <title>BACKGROUND</title> Mental health signifies the emotional, social, and psychological well-being of a person. It also affects the way of thinking, feeling, and situation handling of a person. A stable mental health helps in working with full potential in all stages of life from childhood to adulthood therefore it is of significant importance to find out the onset of the mental disease in order to maintain balance in life. The mental health problems are rising globally and constituting a burden on health-care systems. Early diagnosis can help the professionals in the treatment that may lead to complications if they remain untreated. The machine learning models are highly prevalent for medical data analysis, disease diagnosis, and psychiatric nosology. </sec> <sec> <title>OBJECTIVE</title> This research addresses the challenge of detecting six major psychological disorders, namely, Anxiety, Bipolar Disorder, Conversion Disorder, Depression, Mental Retardation, and Schizophrenia. These challenges are mined by applying decision level fusion of supervised machine learning algorithms. </sec> <sec> <title>METHODS</title> observations that we used for training and testing the models. Furthermore, to reduce the impact of a conflicting decision, a voting scheme Shrewd Probing Prediction Model (SPPM) is introduced to get output from ensemble model of Random Forest and Gradient Boosting Machine (RF+GBM). </sec> <sec> <title>RESULTS</title> The proposed model generated the Term Frequency – Inverse Document Frequency (TF-IDF)-based average accuracy, precision, recall and F1 score of 67% thus outperforming other machine learning models namely, Random Forest (RF), Gradient Boosting Machine (GBM), Logistic Regression (LR) and Support Vector Machines (SVM). </sec> <sec> <title>CONCLUSIONS</title> This research provides an intuitive solution for mental disorder analysis among different target class labels or groups. A framework is proposed for determining the mental health problem of patients using observations of medical experts. The framework consists of an ensemble model based on RF and GBM with a novel SPPM technique, namely SPPM (RF+GBM). This proposed decision level fusion approach significantly improves the performance in terms of Accuracy, Recall, and F1-score with 67%, 66%, and 67% respectively. This framework seems suitable in the case of huge and more diverse multi-class datasets. Furthermore, three vector spaces based on TF-IDF (unigram, bi-gram, and tri-gram) are also tested on the machine learning models and the proposed model. Experiments revealed that unigram performed better on the experimental dataset. In the future, more physiological parameters such as respiratory rate, ECG, and EEG signals can be included as features to improve accuracy. Also, the proposed framework can be tested on a wide range of mental illness categories by adding more mental illness diseases in the dataset which will result in an increase of class labels. </sec>" @default.
- W4230147780 created "2022-05-11" @default.
- W4230147780 creator A5005166536 @default.
- W4230147780 creator A5021992138 @default.
- W4230147780 creator A5044080887 @default.
- W4230147780 creator A5056646889 @default.
- W4230147780 creator A5071230597 @default.
- W4230147780 creator A5087270783 @default.
- W4230147780 date "2020-12-29" @default.
- W4230147780 modified "2023-09-27" @default.
- W4230147780 title "Decision Level Fusion using Ensemble Classifier for Mental Disease Classification (Preprint)" @default.
- W4230147780 doi "https://doi.org/10.2196/preprints.26826" @default.
- W4230147780 hasPublicationYear "2020" @default.
- W4230147780 type Work @default.
- W4230147780 citedByCount "0" @default.
- W4230147780 crossrefType "posted-content" @default.
- W4230147780 hasAuthorship W4230147780A5005166536 @default.
- W4230147780 hasAuthorship W4230147780A5021992138 @default.
- W4230147780 hasAuthorship W4230147780A5044080887 @default.
- W4230147780 hasAuthorship W4230147780A5056646889 @default.
- W4230147780 hasAuthorship W4230147780A5071230597 @default.
- W4230147780 hasAuthorship W4230147780A5087270783 @default.
- W4230147780 hasConcept C118552586 @default.
- W4230147780 hasConcept C119857082 @default.
- W4230147780 hasConcept C134362201 @default.
- W4230147780 hasConcept C154945302 @default.
- W4230147780 hasConcept C15744967 @default.
- W4230147780 hasConcept C169258074 @default.
- W4230147780 hasConcept C41008148 @default.
- W4230147780 hasConcept C45942800 @default.
- W4230147780 hasConcept C46686674 @default.
- W4230147780 hasConcept C558461103 @default.
- W4230147780 hasConcept C70153297 @default.
- W4230147780 hasConcept C84525736 @default.
- W4230147780 hasConceptScore W4230147780C118552586 @default.
- W4230147780 hasConceptScore W4230147780C119857082 @default.
- W4230147780 hasConceptScore W4230147780C134362201 @default.
- W4230147780 hasConceptScore W4230147780C154945302 @default.
- W4230147780 hasConceptScore W4230147780C15744967 @default.
- W4230147780 hasConceptScore W4230147780C169258074 @default.
- W4230147780 hasConceptScore W4230147780C41008148 @default.
- W4230147780 hasConceptScore W4230147780C45942800 @default.
- W4230147780 hasConceptScore W4230147780C46686674 @default.
- W4230147780 hasConceptScore W4230147780C558461103 @default.
- W4230147780 hasConceptScore W4230147780C70153297 @default.
- W4230147780 hasConceptScore W4230147780C84525736 @default.
- W4230147780 hasLocation W42301477801 @default.
- W4230147780 hasOpenAccess W4230147780 @default.
- W4230147780 hasPrimaryLocation W42301477801 @default.
- W4230147780 hasRelatedWork W3100297620 @default.
- W4230147780 hasRelatedWork W3201348321 @default.
- W4230147780 hasRelatedWork W3204021295 @default.
- W4230147780 hasRelatedWork W3204641204 @default.
- W4230147780 hasRelatedWork W4288057626 @default.
- W4230147780 hasRelatedWork W4293069612 @default.
- W4230147780 hasRelatedWork W4296081764 @default.
- W4230147780 hasRelatedWork W4298012357 @default.
- W4230147780 hasRelatedWork W4375930479 @default.
- W4230147780 hasRelatedWork W46572615 @default.
- W4230147780 isParatext "false" @default.
- W4230147780 isRetracted "false" @default.
- W4230147780 workType "article" @default.