Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230234549> ?p ?o ?g. }
- W4230234549 abstract "<sec> <title>BACKGROUND</title> Sleep problems tend to vary according to the course of the disorder in individuals with mental health problems. Research in mental health has associated sleep pathologies with depression. However, the gold standard for sleep assessment, polysomnography (PSG), is not suitable for long-term, continuous monitoring of daily sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient means to monitor sleep in home settings. </sec> <sec> <title>OBJECTIVE</title> The main aim of this study was to devise and extract sleep features from data collected using a wearable device and analyze their associations with depressive symptom severity and sleep quality as measured by the self-assessed Patient Health Questionnaire 8-item (PHQ-8). </sec> <sec> <title>METHODS</title> Daily sleep data were collected passively by Fitbit wristband devices, and depressive symptom severity was self-reported every 2 weeks by the PHQ-8. The data used in this paper included 2812 PHQ-8 records from 368 participants recruited from 3 study sites in the Netherlands, Spain, and the United Kingdom. We extracted 18 sleep features from Fitbit data that describe participant sleep in the following 5 aspects: sleep architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed regression models were used to explore associations between sleep features and depressive symptom severity. The <i>z</i> score was used to evaluate the significance of the coefficient of each feature. </sec> <sec> <title>RESULTS</title> We tested our models on the entire dataset and separately on the data of 3 different study sites. We identified 14 sleep features that were significantly (<i>P</i><.05) associated with the PHQ-8 score on the entire dataset, among them awake time percentage (<i>z</i>=5.45, <i>P</i><.001), awakening times (z=5.53, <i>P</i><.001), insomnia (z=4.55, <i>P</i><.001), mean sleep offset time (z=6.19, <i>P</i><.001), and hypersomnia (z=5.30, <i>P</i><.001) were the top 5 features ranked by <i>z</i> score statistics. Associations between sleep features and PHQ-8 scores varied across different sites, possibly due to differences in the populations. We observed that many of our findings were consistent with previous studies, which used other measurements to assess sleep, such as PSG and sleep questionnaires. </sec> <sec> <title>CONCLUSIONS</title> We demonstrated that several derived sleep features extracted from consumer wearable devices show potential for the remote measurement of sleep as biomarkers of depression in real-world settings. These findings may provide the basis for the development of clinical tools to passively monitor disease state and trajectory, with minimal burden on the participant. </sec>" @default.
- W4230234549 created "2022-05-11" @default.
- W4230234549 creator A5000331489 @default.
- W4230234549 creator A5000686436 @default.
- W4230234549 creator A5001336539 @default.
- W4230234549 creator A5003077442 @default.
- W4230234549 creator A5010087583 @default.
- W4230234549 creator A5011221393 @default.
- W4230234549 creator A5014964951 @default.
- W4230234549 creator A5023150016 @default.
- W4230234549 creator A5027171574 @default.
- W4230234549 creator A5029420224 @default.
- W4230234549 creator A5043677516 @default.
- W4230234549 creator A5049874666 @default.
- W4230234549 creator A5053295426 @default.
- W4230234549 creator A5061293835 @default.
- W4230234549 creator A5062106286 @default.
- W4230234549 creator A5062180220 @default.
- W4230234549 creator A5066918469 @default.
- W4230234549 creator A5068486256 @default.
- W4230234549 creator A5071104569 @default.
- W4230234549 creator A5073465017 @default.
- W4230234549 creator A5077808650 @default.
- W4230234549 creator A5090083507 @default.
- W4230234549 creator A5090485343 @default.
- W4230234549 date "2020-09-26" @default.
- W4230234549 modified "2023-09-29" @default.
- W4230234549 title "Relationship Between Major Depression Symptom Severity and Sleep Collected Using a Wristband Wearable Device: Multicenter Longitudinal Observational Study (Preprint)" @default.
- W4230234549 cites W129305155 @default.
- W4230234549 cites W1490882700 @default.
- W4230234549 cites W1985462913 @default.
- W4230234549 cites W1992137121 @default.
- W4230234549 cites W2013935018 @default.
- W4230234549 cites W2019021373 @default.
- W4230234549 cites W2022024201 @default.
- W4230234549 cites W2038155949 @default.
- W4230234549 cites W2048533792 @default.
- W4230234549 cites W2073437818 @default.
- W4230234549 cites W2077819245 @default.
- W4230234549 cites W2089710525 @default.
- W4230234549 cites W2102656701 @default.
- W4230234549 cites W2110065044 @default.
- W4230234549 cites W2117225980 @default.
- W4230234549 cites W2121693630 @default.
- W4230234549 cites W2129901941 @default.
- W4230234549 cites W2130301641 @default.
- W4230234549 cites W2131984572 @default.
- W4230234549 cites W2135229423 @default.
- W4230234549 cites W2136655611 @default.
- W4230234549 cites W2164414115 @default.
- W4230234549 cites W2340599912 @default.
- W4230234549 cites W2416506115 @default.
- W4230234549 cites W2499377798 @default.
- W4230234549 cites W2560951263 @default.
- W4230234549 cites W2561714104 @default.
- W4230234549 cites W2565580116 @default.
- W4230234549 cites W2757694805 @default.
- W4230234549 cites W2765638029 @default.
- W4230234549 cites W2775576072 @default.
- W4230234549 cites W2898393699 @default.
- W4230234549 cites W2904206377 @default.
- W4230234549 cites W2912143189 @default.
- W4230234549 cites W2940755444 @default.
- W4230234549 cites W2977233777 @default.
- W4230234549 cites W2980985183 @default.
- W4230234549 cites W3105534656 @default.
- W4230234549 cites W4247665917 @default.
- W4230234549 doi "https://doi.org/10.2196/preprints.24604" @default.
- W4230234549 hasPublicationYear "2020" @default.
- W4230234549 type Work @default.
- W4230234549 citedByCount "0" @default.
- W4230234549 crossrefType "posted-content" @default.
- W4230234549 hasAuthorship W4230234549A5000331489 @default.
- W4230234549 hasAuthorship W4230234549A5000686436 @default.
- W4230234549 hasAuthorship W4230234549A5001336539 @default.
- W4230234549 hasAuthorship W4230234549A5003077442 @default.
- W4230234549 hasAuthorship W4230234549A5010087583 @default.
- W4230234549 hasAuthorship W4230234549A5011221393 @default.
- W4230234549 hasAuthorship W4230234549A5014964951 @default.
- W4230234549 hasAuthorship W4230234549A5023150016 @default.
- W4230234549 hasAuthorship W4230234549A5027171574 @default.
- W4230234549 hasAuthorship W4230234549A5029420224 @default.
- W4230234549 hasAuthorship W4230234549A5043677516 @default.
- W4230234549 hasAuthorship W4230234549A5049874666 @default.
- W4230234549 hasAuthorship W4230234549A5053295426 @default.
- W4230234549 hasAuthorship W4230234549A5061293835 @default.
- W4230234549 hasAuthorship W4230234549A5062106286 @default.
- W4230234549 hasAuthorship W4230234549A5062180220 @default.
- W4230234549 hasAuthorship W4230234549A5066918469 @default.
- W4230234549 hasAuthorship W4230234549A5068486256 @default.
- W4230234549 hasAuthorship W4230234549A5071104569 @default.
- W4230234549 hasAuthorship W4230234549A5073465017 @default.
- W4230234549 hasAuthorship W4230234549A5077808650 @default.
- W4230234549 hasAuthorship W4230234549A5090083507 @default.
- W4230234549 hasAuthorship W4230234549A5090485343 @default.
- W4230234549 hasBestOaLocation W42302345492 @default.
- W4230234549 hasConcept C111919701 @default.
- W4230234549 hasConcept C118552586 @default.
- W4230234549 hasConcept C126322002 @default.
- W4230234549 hasConcept C134362201 @default.