Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230348051> ?p ?o ?g. }
- W4230348051 endingPage "470" @default.
- W4230348051 startingPage "442" @default.
- W4230348051 abstract "A number of recent papers on approximation algorithms have used the square roots of unity, −1 and 1, to represent binary decision variables for problems in combinatorial optimization, and have relaxed these to unit vectors in real space using semidefinite programming in order to obtain near optimum solutions to these problems. In this paper, we consider using the cube roots of unity, 1, e i 2 π /3 , and e i 4 π /3 , to represent ternary decision variables for problems in combinatorial optimization. Here the natural relaxation is that of unit vectors in complex space. We use an extension of semidefinite programming to complex space to solve the natural relaxation, and use a natural extension of the random hyperplane technique introduced by the authors in Goemans and Williamson (J. ACM 42 (1995) 1115–1145) to obtain near-optimum solutions to the problems. In particular, we consider the problem of maximizing the total weight of satisfied equations x u −x v ≡c ( mod 3) and inequations x u −x v ≢c ( mod 3) , where x u ∈{0,1,2} for all u . This problem can be used to model the M ax -3-C ut problem and a directed variant we call M ax -3-D icut . For the general problem, we obtain a 0.793733-approximation algorithm. If the instance contains only inequations (as it does for M ax -3-C ut ), we obtain a performance guarantee of 7 12 + 3 4π 2 arccos 2 (−1/4)−ε>0.836008 . This compares with proven performance guarantees of 0.800217 for M ax -3-C ut (by Frieze and Jerrum (Algorithmica 18 (1997) 67–81) and 1 3 +10 −8 for the general problem (by Andersson et al. (J. Algorithms 39 (2001) 162–204)). It matches the guarantee of 0.836008 for M ax -3-C ut found independently by de Klerk et al. (On approximate graph colouring and Max- k -Cut algorithms based on the ϑ -function, Manuscript, October 2000). We show that all these algorithms are in fact equivalent in the case of M ax -3-C ut , and that our algorithm is the same as that of Andersson et al. in the more general case." @default.
- W4230348051 created "2022-05-11" @default.
- W4230348051 creator A5043667154 @default.
- W4230348051 creator A5079132077 @default.
- W4230348051 date "2004-03-01" @default.
- W4230348051 modified "2023-10-16" @default.
- W4230348051 title "Approximation algorithms for Max-3-Cut and other problems via complex semidefinite programming" @default.
- W4230348051 cites W1601503375 @default.
- W4230348051 cites W1632601927 @default.
- W4230348051 cites W1963753244 @default.
- W4230348051 cites W1985123706 @default.
- W4230348051 cites W1997225065 @default.
- W4230348051 cites W2006980285 @default.
- W4230348051 cites W2010471713 @default.
- W4230348051 cites W2012329067 @default.
- W4230348051 cites W2020765652 @default.
- W4230348051 cites W2026820987 @default.
- W4230348051 cites W2027020884 @default.
- W4230348051 cites W2043506441 @default.
- W4230348051 cites W2063046368 @default.
- W4230348051 cites W2069816168 @default.
- W4230348051 cites W2077274614 @default.
- W4230348051 cites W2078289947 @default.
- W4230348051 cites W2093249882 @default.
- W4230348051 cites W2097943357 @default.
- W4230348051 cites W2102588682 @default.
- W4230348051 cites W2109039359 @default.
- W4230348051 cites W2117065890 @default.
- W4230348051 doi "https://doi.org/10.1016/j.jcss.2003.07.012" @default.
- W4230348051 hasPublicationYear "2004" @default.
- W4230348051 type Work @default.
- W4230348051 citedByCount "62" @default.
- W4230348051 countsByYear W42303480512012 @default.
- W4230348051 countsByYear W42303480512013 @default.
- W4230348051 countsByYear W42303480512014 @default.
- W4230348051 countsByYear W42303480512015 @default.
- W4230348051 countsByYear W42303480512016 @default.
- W4230348051 countsByYear W42303480512017 @default.
- W4230348051 countsByYear W42303480512018 @default.
- W4230348051 countsByYear W42303480512019 @default.
- W4230348051 countsByYear W42303480512020 @default.
- W4230348051 countsByYear W42303480512021 @default.
- W4230348051 countsByYear W42303480512022 @default.
- W4230348051 countsByYear W42303480512023 @default.
- W4230348051 crossrefType "journal-article" @default.
- W4230348051 hasAuthorship W4230348051A5043667154 @default.
- W4230348051 hasAuthorship W4230348051A5079132077 @default.
- W4230348051 hasConcept C101901036 @default.
- W4230348051 hasConcept C111919701 @default.
- W4230348051 hasConcept C11413529 @default.
- W4230348051 hasConcept C114614502 @default.
- W4230348051 hasConcept C118615104 @default.
- W4230348051 hasConcept C126255220 @default.
- W4230348051 hasConcept C132525143 @default.
- W4230348051 hasConcept C15744967 @default.
- W4230348051 hasConcept C165526019 @default.
- W4230348051 hasConcept C199360897 @default.
- W4230348051 hasConcept C2776029896 @default.
- W4230348051 hasConcept C2778029271 @default.
- W4230348051 hasConcept C2778572836 @default.
- W4230348051 hasConcept C33923547 @default.
- W4230348051 hasConcept C41008148 @default.
- W4230348051 hasConcept C41045048 @default.
- W4230348051 hasConcept C52692508 @default.
- W4230348051 hasConcept C68693459 @default.
- W4230348051 hasConcept C77805123 @default.
- W4230348051 hasConceptScore W4230348051C101901036 @default.
- W4230348051 hasConceptScore W4230348051C111919701 @default.
- W4230348051 hasConceptScore W4230348051C11413529 @default.
- W4230348051 hasConceptScore W4230348051C114614502 @default.
- W4230348051 hasConceptScore W4230348051C118615104 @default.
- W4230348051 hasConceptScore W4230348051C126255220 @default.
- W4230348051 hasConceptScore W4230348051C132525143 @default.
- W4230348051 hasConceptScore W4230348051C15744967 @default.
- W4230348051 hasConceptScore W4230348051C165526019 @default.
- W4230348051 hasConceptScore W4230348051C199360897 @default.
- W4230348051 hasConceptScore W4230348051C2776029896 @default.
- W4230348051 hasConceptScore W4230348051C2778029271 @default.
- W4230348051 hasConceptScore W4230348051C2778572836 @default.
- W4230348051 hasConceptScore W4230348051C33923547 @default.
- W4230348051 hasConceptScore W4230348051C41008148 @default.
- W4230348051 hasConceptScore W4230348051C41045048 @default.
- W4230348051 hasConceptScore W4230348051C52692508 @default.
- W4230348051 hasConceptScore W4230348051C68693459 @default.
- W4230348051 hasConceptScore W4230348051C77805123 @default.
- W4230348051 hasIssue "2" @default.
- W4230348051 hasLocation W42303480511 @default.
- W4230348051 hasOpenAccess W4230348051 @default.
- W4230348051 hasPrimaryLocation W42303480511 @default.
- W4230348051 hasRelatedWork W1526171273 @default.
- W4230348051 hasRelatedWork W1553621070 @default.
- W4230348051 hasRelatedWork W1585743111 @default.
- W4230348051 hasRelatedWork W2063046368 @default.
- W4230348051 hasRelatedWork W2118059629 @default.
- W4230348051 hasRelatedWork W2903600844 @default.
- W4230348051 hasRelatedWork W2907872375 @default.
- W4230348051 hasRelatedWork W3132970834 @default.
- W4230348051 hasRelatedWork W4230348051 @default.