Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230361014> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4230361014 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> <span id=page5536/>In air quality research, often only size-integrated particle mass concentrations as indicators of aerosol particles are considered. However, the mass concentrations do not provide sufficient information to convey the full story of fractionated size distribution, in which the particles of different diameters (<span class=inline-formula><i>D</i><sub>p</sub></span>) are able to deposit differently on respiratory system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to solve. Due to the instrumental insufficiency and inversion limitations, imputation methods for fractionated particle size distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol size distributions from 0.01 to 0.42â<span class=inline-formula>µm</span> (electrical mobility equivalent size) and 0.3 to 10â<span class=inline-formula>µm</span> (optical equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan, in the period of 1 August 2016â31 July 2017. We develop and evaluate feed-forward neural network (FFNN) approaches to estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins and (3) both of the above as input variables. Two layers with 10â15 neurons are found to be the optimal option. Worse performance is observed at the lower edge (<span class=inline-formula><math xmlns=http://www.w3.org/1998/Math/MathML id=M4 display=inline overflow=scroll dspmath=mathml><mrow><mn mathvariant=normal>0.01</mn><mo><</mo><msub><mi>D</mi><mi mathvariant=normal>p</mi></msub><mo><</mo><mn mathvariant=normal>0.02</mn></mrow></math><span><svg:svg xmlns:svg=http://www.w3.org/2000/svg width=83pt height=14pt class=svg-formula dspmath=mathimg md5hash=0a19d858f772fceabb7358981286c2af><svg:image xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=amt-14-5535-2021-ie00001.svg width=83pt height=14pt src=amt-14-5535-2021-ie00001.png/></svg:svg></span></span>â<span class=inline-formula>µm</span>), the mid-range region (<span class=inline-formula><math xmlns=http://www.w3.org/1998/Math/MathML id=M6 display=inline overflow=scroll dspmath=mathml><mrow><mn mathvariant=normal>0.15</mn><mo><</mo><msub><mi>D</mi><mi mathvariant=normal>p</mi></msub><mo><</mo><mn mathvariant=normal>0.5</mn></mrow></math><span><svg:svg xmlns:svg=http://www.w3.org/2000/svg width=77pt height=14pt class=svg-formula dspmath=mathimg md5hash=4c842197885cdc4dc6daf89731acd19e><svg:image xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=amt-14-5535-2021-ie00002.svg width=77pt height=14pt src=amt-14-5535-2021-ie00002.png/></svg:svg></span></span>â<span class=inline-formula>µm</span>) and the upper edge (<span class=inline-formula><math xmlns=http://www.w3.org/1998/Math/MathML id=M8 display=inline overflow=scroll dspmath=mathml><mrow><mn mathvariant=normal>6</mn><mo><</mo><msub><mi>D</mi><mi mathvariant=normal>p</mi></msub><mo><</mo><mn mathvariant=normal>10</mn></mrow></math><span><svg:svg xmlns:svg=http://www.w3.org/2000/svg width=58pt height=14pt class=svg-formula dspmath=mathimg md5hash=a7eb375b62532835fdc23b1be88eb5ad><svg:image xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=amt-14-5535-2021-ie00003.svg width=58pt height=14pt src=amt-14-5535-2021-ie00003.png/></svg:svg></span></span>â<span class=inline-formula>µm</span>). For the edges at both ends, the number of neighbouring size bins is limited, and the detection efficiency by the corresponding instruments is lower compared to the other size bins. A distinct performance drop over the overlapping mid-range region is due to the deficiency of a merging algorithm. Another plausible reason for the poorer performance for finer particles is that they are more effectively removed from the atmosphere compared to the coarser particles so that the relationships between the input variables and the small particles are more dynamic. An observable overestimation is also found in the early morning for ultrafine particles followed by a distinct underestimation before midday. In the winter, due to a possible sensor drift and interference artefacts, the estimation performance is not as good as the other seasons. The FFNN approach by meteorological parameters using 5âmin data (<span class=inline-formula><i>R</i><sup>2</sup>=</span>â0.22â0.58) shows poorer results than data with longer time resolution (<span class=inline-formula><i>R</i><sup>2</sup>=</span>â0.66â0.77). The FFNN approach using the number concentration at the other size bins can serve as an alternative way to replace negative numbers in the size distribution raw dataset thanks to its high accuracy and reliability (<span class=inline-formula><i>R</i><sup>2</sup>=</span>â0.97â1). This negative-number filling approach can maintain a symmetric distribution of errors and complement the existing ill-posed built-in algorithm in particle sizer instruments." @default.
- W4230361014 created "2022-05-11" @default.
- W4230361014 creator A5033926071 @default.
- W4230361014 date "2021-07-11" @default.
- W4230361014 modified "2023-10-16" @default.
- W4230361014 title "Reply on RC2" @default.
- W4230361014 doi "https://doi.org/10.5194/amt-2021-37-ac2" @default.
- W4230361014 hasPublicationYear "2021" @default.
- W4230361014 type Work @default.
- W4230361014 citedByCount "0" @default.
- W4230361014 crossrefType "peer-review" @default.
- W4230361014 hasAuthorship W4230361014A5033926071 @default.
- W4230361014 hasBestOaLocation W42303610141 @default.
- W4230361014 hasConcept C105795698 @default.
- W4230361014 hasConcept C109007969 @default.
- W4230361014 hasConcept C11413529 @default.
- W4230361014 hasConcept C121332964 @default.
- W4230361014 hasConcept C127313418 @default.
- W4230361014 hasConcept C127413603 @default.
- W4230361014 hasConcept C145420912 @default.
- W4230361014 hasConcept C147176958 @default.
- W4230361014 hasConcept C147789679 @default.
- W4230361014 hasConcept C151730666 @default.
- W4230361014 hasConcept C153294291 @default.
- W4230361014 hasConcept C156273044 @default.
- W4230361014 hasConcept C185592680 @default.
- W4230361014 hasConcept C187530423 @default.
- W4230361014 hasConcept C1893757 @default.
- W4230361014 hasConcept C2776824051 @default.
- W4230361014 hasConcept C2778750611 @default.
- W4230361014 hasConcept C2778753569 @default.
- W4230361014 hasConcept C2779345167 @default.
- W4230361014 hasConcept C33923547 @default.
- W4230361014 hasConcept C39432304 @default.
- W4230361014 hasConcept C60448018 @default.
- W4230361014 hasConceptScore W4230361014C105795698 @default.
- W4230361014 hasConceptScore W4230361014C109007969 @default.
- W4230361014 hasConceptScore W4230361014C11413529 @default.
- W4230361014 hasConceptScore W4230361014C121332964 @default.
- W4230361014 hasConceptScore W4230361014C127313418 @default.
- W4230361014 hasConceptScore W4230361014C127413603 @default.
- W4230361014 hasConceptScore W4230361014C145420912 @default.
- W4230361014 hasConceptScore W4230361014C147176958 @default.
- W4230361014 hasConceptScore W4230361014C147789679 @default.
- W4230361014 hasConceptScore W4230361014C151730666 @default.
- W4230361014 hasConceptScore W4230361014C153294291 @default.
- W4230361014 hasConceptScore W4230361014C156273044 @default.
- W4230361014 hasConceptScore W4230361014C185592680 @default.
- W4230361014 hasConceptScore W4230361014C187530423 @default.
- W4230361014 hasConceptScore W4230361014C1893757 @default.
- W4230361014 hasConceptScore W4230361014C2776824051 @default.
- W4230361014 hasConceptScore W4230361014C2778750611 @default.
- W4230361014 hasConceptScore W4230361014C2778753569 @default.
- W4230361014 hasConceptScore W4230361014C2779345167 @default.
- W4230361014 hasConceptScore W4230361014C33923547 @default.
- W4230361014 hasConceptScore W4230361014C39432304 @default.
- W4230361014 hasConceptScore W4230361014C60448018 @default.
- W4230361014 hasLocation W42303610141 @default.
- W4230361014 hasOpenAccess W4230361014 @default.
- W4230361014 hasPrimaryLocation W42303610141 @default.
- W4230361014 hasRelatedWork W1273835387 @default.
- W4230361014 hasRelatedWork W1582641504 @default.
- W4230361014 hasRelatedWork W2075117782 @default.
- W4230361014 hasRelatedWork W2155696599 @default.
- W4230361014 hasRelatedWork W2487801800 @default.
- W4230361014 hasRelatedWork W3159417935 @default.
- W4230361014 hasRelatedWork W3194427067 @default.
- W4230361014 hasRelatedWork W4221023189 @default.
- W4230361014 hasRelatedWork W4244545573 @default.
- W4230361014 hasRelatedWork W2909851654 @default.
- W4230361014 isParatext "false" @default.
- W4230361014 isRetracted "false" @default.
- W4230361014 workType "peer-review" @default.