Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230609315> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4230609315 abstract "<sec> <title>BACKGROUND</title> Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems (CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist physicians in making useful clinical decisions and can help shape prescribing behavior. Multiple studies reported that approximately 90%-96% of alerts are overridden by physicians, which raises questions about the effectiveness of CDSSs. There is intense interest in developing sophisticated methods to combat alert fatigue, but there is no consensus on the optimal approaches so far. </sec> <sec> <title>OBJECTIVE</title> Our objective was to develop machine learning prediction models to predict physicians’ responses in order to reduce alert fatigue from disease medication–related CDSSs. </sec> <sec> <title>METHODS</title> We collected data from a disease medication–related CDSS from a university teaching hospital in Taiwan. We considered prescriptions that triggered alerts in the CDSS between August 2018 and May 2019. Machine learning models, such as artificial neural network (ANN), random forest (RF), naïve Bayes (NB), gradient boosting (GB), and support vector machine (SVM), were used to develop prediction models. The data were randomly split into training (80%) and testing (20%) datasets. </sec> <sec> <title>RESULTS</title> A total of 6453 prescriptions were used in our model. The ANN machine learning prediction model demonstrated excellent discrimination (area under the receiver operating characteristic curve [AUROC] 0.94; accuracy 0.85), whereas the RF, NB, GB, and SVM models had AUROCs of 0.93, 0.91, 0.91, and 0.80, respectively. The sensitivity and specificity of the ANN model were 0.87 and 0.83, respectively. </sec> <sec> <title>CONCLUSIONS</title> In this study, ANN showed substantially better performance in predicting individual physician responses to an alert from a disease medication–related CDSS, as compared to the other models. To our knowledge, this is the first study to use machine learning models to predict physician responses to alerts; furthermore, it can help to develop sophisticated CDSSs in real-world clinical settings. </sec>" @default.
- W4230609315 created "2022-05-11" @default.
- W4230609315 creator A5008438843 @default.
- W4230609315 creator A5013242165 @default.
- W4230609315 creator A5045320870 @default.
- W4230609315 creator A5058108838 @default.
- W4230609315 creator A5071212778 @default.
- W4230609315 creator A5085663133 @default.
- W4230609315 date "2020-04-20" @default.
- W4230609315 modified "2023-10-16" @default.
- W4230609315 title "Machine Learning Approach to Reduce Alert Fatigue Using a Disease Medication–Related Clinical Decision Support System: Model Development and Validation (Preprint)" @default.
- W4230609315 cites W1937346126 @default.
- W4230609315 cites W1985254283 @default.
- W4230609315 cites W1999247002 @default.
- W4230609315 cites W2008174801 @default.
- W4230609315 cites W2009190245 @default.
- W4230609315 cites W2011533104 @default.
- W4230609315 cites W2041854656 @default.
- W4230609315 cites W2044859414 @default.
- W4230609315 cites W2051505746 @default.
- W4230609315 cites W2101644441 @default.
- W4230609315 cites W2106619657 @default.
- W4230609315 cites W2110922423 @default.
- W4230609315 cites W2111489845 @default.
- W4230609315 cites W2128124510 @default.
- W4230609315 cites W2128688562 @default.
- W4230609315 cites W2134302857 @default.
- W4230609315 cites W2166804499 @default.
- W4230609315 cites W2169631623 @default.
- W4230609315 cites W2242491276 @default.
- W4230609315 cites W2262116908 @default.
- W4230609315 cites W2340216362 @default.
- W4230609315 cites W2410800783 @default.
- W4230609315 cites W2765920053 @default.
- W4230609315 cites W2891105177 @default.
- W4230609315 cites W4229754859 @default.
- W4230609315 doi "https://doi.org/10.2196/preprints.19489" @default.
- W4230609315 hasPublicationYear "2020" @default.
- W4230609315 type Work @default.
- W4230609315 citedByCount "0" @default.
- W4230609315 crossrefType "posted-content" @default.
- W4230609315 hasAuthorship W4230609315A5008438843 @default.
- W4230609315 hasAuthorship W4230609315A5013242165 @default.
- W4230609315 hasAuthorship W4230609315A5045320870 @default.
- W4230609315 hasAuthorship W4230609315A5058108838 @default.
- W4230609315 hasAuthorship W4230609315A5071212778 @default.
- W4230609315 hasAuthorship W4230609315A5085663133 @default.
- W4230609315 hasBestOaLocation W42306093152 @default.
- W4230609315 hasConcept C107327155 @default.
- W4230609315 hasConcept C119857082 @default.
- W4230609315 hasConcept C12267149 @default.
- W4230609315 hasConcept C154945302 @default.
- W4230609315 hasConcept C169258074 @default.
- W4230609315 hasConcept C2426938 @default.
- W4230609315 hasConcept C41008148 @default.
- W4230609315 hasConcept C50644808 @default.
- W4230609315 hasConcept C52001869 @default.
- W4230609315 hasConcept C58471807 @default.
- W4230609315 hasConcept C63527458 @default.
- W4230609315 hasConcept C71924100 @default.
- W4230609315 hasConcept C98274493 @default.
- W4230609315 hasConceptScore W4230609315C107327155 @default.
- W4230609315 hasConceptScore W4230609315C119857082 @default.
- W4230609315 hasConceptScore W4230609315C12267149 @default.
- W4230609315 hasConceptScore W4230609315C154945302 @default.
- W4230609315 hasConceptScore W4230609315C169258074 @default.
- W4230609315 hasConceptScore W4230609315C2426938 @default.
- W4230609315 hasConceptScore W4230609315C41008148 @default.
- W4230609315 hasConceptScore W4230609315C50644808 @default.
- W4230609315 hasConceptScore W4230609315C52001869 @default.
- W4230609315 hasConceptScore W4230609315C58471807 @default.
- W4230609315 hasConceptScore W4230609315C63527458 @default.
- W4230609315 hasConceptScore W4230609315C71924100 @default.
- W4230609315 hasConceptScore W4230609315C98274493 @default.
- W4230609315 hasLocation W42306093151 @default.
- W4230609315 hasLocation W42306093152 @default.
- W4230609315 hasOpenAccess W4230609315 @default.
- W4230609315 hasPrimaryLocation W42306093151 @default.
- W4230609315 hasRelatedWork W1537870 @default.
- W4230609315 hasRelatedWork W1678066 @default.
- W4230609315 hasRelatedWork W1688 @default.
- W4230609315 hasRelatedWork W2233117 @default.
- W4230609315 hasRelatedWork W378023 @default.
- W4230609315 hasRelatedWork W497513 @default.
- W4230609315 hasRelatedWork W5683678 @default.
- W4230609315 hasRelatedWork W621929 @default.
- W4230609315 hasRelatedWork W6552940 @default.
- W4230609315 hasRelatedWork W6520261 @default.
- W4230609315 isParatext "false" @default.
- W4230609315 isRetracted "false" @default.
- W4230609315 workType "article" @default.