Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230731719> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4230731719 endingPage "1275" @default.
- W4230731719 startingPage "1254" @default.
- W4230731719 abstract "The chapter describes a multilayer quantum backpropagation neural network (QBPNN) architecture to predict the removal of phenol from aqueous solution by orange peel ash, guided by the application of three types of activation functions and characterized by backpropagation of errors. These activation functions are Sigmoid function, tanh function and tan1.5h function. First by a classical multilayer neural network architecture with three types of activation functions is discussed in this chapter. It takes 6000000 iterations to train the network with a learning rate of 0.01. Among these three types of activation functions tan1.5 function shows the best prediction result. Next, QBPNN is discussed in this chapter. It takes 22000 iterations to train the network with the same learning rate. Here also tan1.5h function shows the best result in prediction of removal of phenol. Thus QBPNN is much faster than the classical multilayer neural network architecture. Different graphs are also given for comparison between the experimental output and network output using different activation functions. This particular chapter basically deals with a model application by which experimental results can be comparing with the model output. Because of their reliable, robust, and salient characteristics in capturing the non-linear relationships existing between variables (multi-input/output) in complex systems, it has become apparent that numerous applications of ANNs/QBNN have been successfully conducted in various parts of environmental engineering. Fuzzy Logic is also used as alternate method to predict the removal of phenol from aqueous solution by orange peel ash, but QBPNN shows the best result." @default.
- W4230731719 created "2022-05-11" @default.
- W4230731719 creator A5005258575 @default.
- W4230731719 creator A5045523299 @default.
- W4230731719 creator A5078643546 @default.
- W4230731719 date "2014-02-26" @default.
- W4230731719 modified "2023-09-27" @default.
- W4230731719 title "Quantum Backpropagation Neural Network Approach for Modeling of Phenol Adsorption from Aqueous Solution by Orange Peel Ash" @default.
- W4230731719 cites W1569000027 @default.
- W4230731719 cites W1570044271 @default.
- W4230731719 cites W1620538313 @default.
- W4230731719 cites W1995341919 @default.
- W4230731719 cites W1996460491 @default.
- W4230731719 cites W1999866166 @default.
- W4230731719 cites W2055784634 @default.
- W4230731719 cites W2091310066 @default.
- W4230731719 cites W2091588731 @default.
- W4230731719 cites W2094657480 @default.
- W4230731719 cites W2103028695 @default.
- W4230731719 cites W2128024939 @default.
- W4230731719 cites W2148132004 @default.
- W4230731719 cites W3037256833 @default.
- W4230731719 cites W4241395986 @default.
- W4230731719 cites W4300402905 @default.
- W4230731719 doi "https://doi.org/10.4018/978-1-4666-5125-8.ch057" @default.
- W4230731719 hasPublicationYear "2014" @default.
- W4230731719 type Work @default.
- W4230731719 citedByCount "0" @default.
- W4230731719 crossrefType "book-chapter" @default.
- W4230731719 hasAuthorship W4230731719A5005258575 @default.
- W4230731719 hasAuthorship W4230731719A5045523299 @default.
- W4230731719 hasAuthorship W4230731719A5078643546 @default.
- W4230731719 hasConcept C11413529 @default.
- W4230731719 hasConcept C147789679 @default.
- W4230731719 hasConcept C154945302 @default.
- W4230731719 hasConcept C155032097 @default.
- W4230731719 hasConcept C178790620 @default.
- W4230731719 hasConcept C184651966 @default.
- W4230731719 hasConcept C185592680 @default.
- W4230731719 hasConcept C186060115 @default.
- W4230731719 hasConcept C2777702071 @default.
- W4230731719 hasConcept C38365724 @default.
- W4230731719 hasConcept C41008148 @default.
- W4230731719 hasConcept C50644808 @default.
- W4230731719 hasConcept C58166 @default.
- W4230731719 hasConcept C81388566 @default.
- W4230731719 hasConcept C86803240 @default.
- W4230731719 hasConceptScore W4230731719C11413529 @default.
- W4230731719 hasConceptScore W4230731719C147789679 @default.
- W4230731719 hasConceptScore W4230731719C154945302 @default.
- W4230731719 hasConceptScore W4230731719C155032097 @default.
- W4230731719 hasConceptScore W4230731719C178790620 @default.
- W4230731719 hasConceptScore W4230731719C184651966 @default.
- W4230731719 hasConceptScore W4230731719C185592680 @default.
- W4230731719 hasConceptScore W4230731719C186060115 @default.
- W4230731719 hasConceptScore W4230731719C2777702071 @default.
- W4230731719 hasConceptScore W4230731719C38365724 @default.
- W4230731719 hasConceptScore W4230731719C41008148 @default.
- W4230731719 hasConceptScore W4230731719C50644808 @default.
- W4230731719 hasConceptScore W4230731719C58166 @default.
- W4230731719 hasConceptScore W4230731719C81388566 @default.
- W4230731719 hasConceptScore W4230731719C86803240 @default.
- W4230731719 hasLocation W42307317191 @default.
- W4230731719 hasOpenAccess W4230731719 @default.
- W4230731719 hasPrimaryLocation W42307317191 @default.
- W4230731719 hasRelatedWork W11185966 @default.
- W4230731719 hasRelatedWork W1407330 @default.
- W4230731719 hasRelatedWork W19963198 @default.
- W4230731719 hasRelatedWork W2269391 @default.
- W4230731719 hasRelatedWork W2433769 @default.
- W4230731719 hasRelatedWork W637621 @default.
- W4230731719 hasRelatedWork W8067959 @default.
- W4230731719 hasRelatedWork W819137 @default.
- W4230731719 hasRelatedWork W8636990 @default.
- W4230731719 hasRelatedWork W1476482 @default.
- W4230731719 isParatext "false" @default.
- W4230731719 isRetracted "false" @default.
- W4230731719 workType "book-chapter" @default.