Matches in SemOpenAlex for { <https://semopenalex.org/work/W4230797216> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4230797216 abstract "A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists.Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button.The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches." @default.
- W4230797216 created "2022-05-11" @default.
- W4230797216 creator A5023822672 @default.
- W4230797216 date "2014-01-01" @default.
- W4230797216 modified "2023-10-16" @default.
- W4230797216 title "Analyzing Neural Time Series Data" @default.
- W4230797216 doi "https://doi.org/10.7551/mitpress/9609.001.0001" @default.
- W4230797216 hasPublicationYear "2014" @default.
- W4230797216 type Work @default.
- W4230797216 citedByCount "1138" @default.
- W4230797216 countsByYear W42307972162012 @default.
- W4230797216 countsByYear W42307972162013 @default.
- W4230797216 countsByYear W42307972162014 @default.
- W4230797216 countsByYear W42307972162015 @default.
- W4230797216 countsByYear W42307972162016 @default.
- W4230797216 countsByYear W42307972162017 @default.
- W4230797216 countsByYear W42307972162018 @default.
- W4230797216 countsByYear W42307972162019 @default.
- W4230797216 countsByYear W42307972162020 @default.
- W4230797216 countsByYear W42307972162021 @default.
- W4230797216 countsByYear W42307972162022 @default.
- W4230797216 countsByYear W42307972162023 @default.
- W4230797216 crossrefType "book" @default.
- W4230797216 hasAuthorship W4230797216A5023822672 @default.
- W4230797216 hasConcept C118552586 @default.
- W4230797216 hasConcept C154945302 @default.
- W4230797216 hasConcept C15744967 @default.
- W4230797216 hasConcept C188147891 @default.
- W4230797216 hasConcept C199360897 @default.
- W4230797216 hasConcept C202444582 @default.
- W4230797216 hasConcept C2522767166 @default.
- W4230797216 hasConcept C2780365114 @default.
- W4230797216 hasConcept C33923547 @default.
- W4230797216 hasConcept C41008148 @default.
- W4230797216 hasConcept C522805319 @default.
- W4230797216 hasConcept C556910895 @default.
- W4230797216 hasConcept C9652623 @default.
- W4230797216 hasConceptScore W4230797216C118552586 @default.
- W4230797216 hasConceptScore W4230797216C154945302 @default.
- W4230797216 hasConceptScore W4230797216C15744967 @default.
- W4230797216 hasConceptScore W4230797216C188147891 @default.
- W4230797216 hasConceptScore W4230797216C199360897 @default.
- W4230797216 hasConceptScore W4230797216C202444582 @default.
- W4230797216 hasConceptScore W4230797216C2522767166 @default.
- W4230797216 hasConceptScore W4230797216C2780365114 @default.
- W4230797216 hasConceptScore W4230797216C33923547 @default.
- W4230797216 hasConceptScore W4230797216C41008148 @default.
- W4230797216 hasConceptScore W4230797216C522805319 @default.
- W4230797216 hasConceptScore W4230797216C556910895 @default.
- W4230797216 hasConceptScore W4230797216C9652623 @default.
- W4230797216 hasLocation W42307972161 @default.
- W4230797216 hasOpenAccess W4230797216 @default.
- W4230797216 hasPrimaryLocation W42307972161 @default.
- W4230797216 hasRelatedWork W1981827817 @default.
- W4230797216 hasRelatedWork W2032176709 @default.
- W4230797216 hasRelatedWork W2046429112 @default.
- W4230797216 hasRelatedWork W2063347383 @default.
- W4230797216 hasRelatedWork W2366703348 @default.
- W4230797216 hasRelatedWork W2618190870 @default.
- W4230797216 hasRelatedWork W2894547320 @default.
- W4230797216 hasRelatedWork W3153433522 @default.
- W4230797216 hasRelatedWork W35607744 @default.
- W4230797216 hasRelatedWork W4297416081 @default.
- W4230797216 isParatext "false" @default.
- W4230797216 isRetracted "false" @default.
- W4230797216 workType "book" @default.