Matches in SemOpenAlex for { <https://semopenalex.org/work/W4231061175> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4231061175 abstract "Continued increases in the emission of greenhouse gases by passenger vehicles has accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. The design and implementation of an optimized control strategy is a complex challenge. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require a priori knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. Real-time strategies incorporate methods such as drive cycle prediction algorithms, parameter feedback, driving pattern recognition algorithms, etc. The goal of this work is to use a previously defined strategy which has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strategy used is the Equivalent Consumption Minimization Strategy (ECMS) [1], which uses an equivalence factor to define the control strategy. The equivalence factor essentially defines the torque split between the electric motor and internal combustion engine. Consequently, the equivalence factor greatly affects fuel economy. An equivalence factor that is optimal (with respect to fuel economy) for a single drive cycle can be found offline – with a priori knowledge of the drive cycle. The RBF ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data are used to train the RBF ANN, each set contains characteristics from a different drive cycle. Each drive cycle is characterized by 9 parameters. For each drive cycle, the optimal equivalence factor is determined and included in the training data. The performance of the RBF ANN is evaluated against the fuel economy obtained with the optimal equivalence factor from the ECMS. For the majority of drive cycles examined, the RBF ANN implementation is shown to produce fuel economy values that are within +/- 2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF ANN is that it does not require a priori drive cycle knowledge and is able to be implemented real time while meeting" @default.
- W4231061175 created "2022-05-11" @default.
- W4231061175 creator A5073480505 @default.
- W4231061175 date "2021-01-19" @default.
- W4231061175 modified "2023-10-17" @default.
- W4231061175 title "Implementation of Radial Basis Function Artificial Neural Network into an Adaptive Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle" @default.
- W4231061175 doi "https://doi.org/10.33915/etd.7847" @default.
- W4231061175 hasPublicationYear "2021" @default.
- W4231061175 type Work @default.
- W4231061175 citedByCount "0" @default.
- W4231061175 crossrefType "dissertation" @default.
- W4231061175 hasAuthorship W4231061175A5073480505 @default.
- W4231061175 hasBestOaLocation W42310611751 @default.
- W4231061175 hasConcept C111472728 @default.
- W4231061175 hasConcept C121332964 @default.
- W4231061175 hasConcept C126255220 @default.
- W4231061175 hasConcept C127413603 @default.
- W4231061175 hasConcept C13280743 @default.
- W4231061175 hasConcept C133731056 @default.
- W4231061175 hasConcept C138885662 @default.
- W4231061175 hasConcept C147764199 @default.
- W4231061175 hasConcept C154945302 @default.
- W4231061175 hasConcept C163258240 @default.
- W4231061175 hasConcept C169042556 @default.
- W4231061175 hasConcept C171146098 @default.
- W4231061175 hasConcept C185798385 @default.
- W4231061175 hasConcept C205649164 @default.
- W4231061175 hasConcept C2775924081 @default.
- W4231061175 hasConcept C2776422217 @default.
- W4231061175 hasConcept C33923547 @default.
- W4231061175 hasConcept C41008148 @default.
- W4231061175 hasConcept C45882903 @default.
- W4231061175 hasConcept C47446073 @default.
- W4231061175 hasConcept C50644808 @default.
- W4231061175 hasConcept C62520636 @default.
- W4231061175 hasConcept C75553542 @default.
- W4231061175 hasConceptScore W4231061175C111472728 @default.
- W4231061175 hasConceptScore W4231061175C121332964 @default.
- W4231061175 hasConceptScore W4231061175C126255220 @default.
- W4231061175 hasConceptScore W4231061175C127413603 @default.
- W4231061175 hasConceptScore W4231061175C13280743 @default.
- W4231061175 hasConceptScore W4231061175C133731056 @default.
- W4231061175 hasConceptScore W4231061175C138885662 @default.
- W4231061175 hasConceptScore W4231061175C147764199 @default.
- W4231061175 hasConceptScore W4231061175C154945302 @default.
- W4231061175 hasConceptScore W4231061175C163258240 @default.
- W4231061175 hasConceptScore W4231061175C169042556 @default.
- W4231061175 hasConceptScore W4231061175C171146098 @default.
- W4231061175 hasConceptScore W4231061175C185798385 @default.
- W4231061175 hasConceptScore W4231061175C205649164 @default.
- W4231061175 hasConceptScore W4231061175C2775924081 @default.
- W4231061175 hasConceptScore W4231061175C2776422217 @default.
- W4231061175 hasConceptScore W4231061175C33923547 @default.
- W4231061175 hasConceptScore W4231061175C41008148 @default.
- W4231061175 hasConceptScore W4231061175C45882903 @default.
- W4231061175 hasConceptScore W4231061175C47446073 @default.
- W4231061175 hasConceptScore W4231061175C50644808 @default.
- W4231061175 hasConceptScore W4231061175C62520636 @default.
- W4231061175 hasConceptScore W4231061175C75553542 @default.
- W4231061175 hasLocation W42310611751 @default.
- W4231061175 hasOpenAccess W4231061175 @default.
- W4231061175 hasPrimaryLocation W42310611751 @default.
- W4231061175 hasRelatedWork W10951748 @default.
- W4231061175 hasRelatedWork W12017001 @default.
- W4231061175 hasRelatedWork W3011641 @default.
- W4231061175 hasRelatedWork W3400963 @default.
- W4231061175 hasRelatedWork W3717492 @default.
- W4231061175 hasRelatedWork W4123974 @default.
- W4231061175 hasRelatedWork W4351138 @default.
- W4231061175 hasRelatedWork W4990209 @default.
- W4231061175 hasRelatedWork W8112324 @default.
- W4231061175 hasRelatedWork W2305095 @default.
- W4231061175 isParatext "false" @default.
- W4231061175 isRetracted "false" @default.
- W4231061175 workType "dissertation" @default.