Matches in SemOpenAlex for { <https://semopenalex.org/work/W4231199340> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4231199340 abstract "Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting time-dependent optimal control fields, <i>E(t)</i>, that enable desired electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency domain (i.e., the Fourier transform of <i>E(t)</i>), and (2) a cross-correlation neural network approach for directly predicting <i>E(t)</i> in the time domain. Both of these machine learning methods give complementary approaches for probing the underlying quantum dynamics and also exhibit impressive performance in accurately predicting both the frequency and strength of the optimal control field. We provide detailed architectures and hyperparameters for these deep neural networks as well as performance metrics for each of our machine-learned models. From these results, we show that machine learning approaches, particularly deep neural networks, can be employed as a cost-effective statistical approach for designing electromagnetic fields to enable desired transitions in these quantum dynamical systems." @default.
- W4231199340 created "2022-05-12" @default.
- W4231199340 creator A5002314629 @default.
- W4231199340 creator A5021769901 @default.
- W4231199340 creator A5022569738 @default.
- W4231199340 creator A5091230938 @default.
- W4231199340 date "2020-09-02" @default.
- W4231199340 modified "2023-10-07" @default.
- W4231199340 title "Harnessing Deep Neural Networks to Solve Inverse Problems in Quantum Dynamics: Machine-Learned Predictions of Time-Dependent Optimal Control Fields" @default.
- W4231199340 doi "https://doi.org/10.26434/chemrxiv.12905633.v1" @default.
- W4231199340 hasPublicationYear "2020" @default.
- W4231199340 type Work @default.
- W4231199340 citedByCount "0" @default.
- W4231199340 crossrefType "posted-content" @default.
- W4231199340 hasAuthorship W4231199340A5002314629 @default.
- W4231199340 hasAuthorship W4231199340A5021769901 @default.
- W4231199340 hasAuthorship W4231199340A5022569738 @default.
- W4231199340 hasAuthorship W4231199340A5091230938 @default.
- W4231199340 hasBestOaLocation W42311993401 @default.
- W4231199340 hasConcept C108583219 @default.
- W4231199340 hasConcept C119857082 @default.
- W4231199340 hasConcept C121332964 @default.
- W4231199340 hasConcept C126255220 @default.
- W4231199340 hasConcept C151730666 @default.
- W4231199340 hasConcept C154945302 @default.
- W4231199340 hasConcept C19118579 @default.
- W4231199340 hasConcept C202444582 @default.
- W4231199340 hasConcept C2779343474 @default.
- W4231199340 hasConcept C31972630 @default.
- W4231199340 hasConcept C33923547 @default.
- W4231199340 hasConcept C41008148 @default.
- W4231199340 hasConcept C47702885 @default.
- W4231199340 hasConcept C50644808 @default.
- W4231199340 hasConcept C62520636 @default.
- W4231199340 hasConcept C84114770 @default.
- W4231199340 hasConcept C8642999 @default.
- W4231199340 hasConcept C86803240 @default.
- W4231199340 hasConcept C91575142 @default.
- W4231199340 hasConcept C9652623 @default.
- W4231199340 hasConceptScore W4231199340C108583219 @default.
- W4231199340 hasConceptScore W4231199340C119857082 @default.
- W4231199340 hasConceptScore W4231199340C121332964 @default.
- W4231199340 hasConceptScore W4231199340C126255220 @default.
- W4231199340 hasConceptScore W4231199340C151730666 @default.
- W4231199340 hasConceptScore W4231199340C154945302 @default.
- W4231199340 hasConceptScore W4231199340C19118579 @default.
- W4231199340 hasConceptScore W4231199340C202444582 @default.
- W4231199340 hasConceptScore W4231199340C2779343474 @default.
- W4231199340 hasConceptScore W4231199340C31972630 @default.
- W4231199340 hasConceptScore W4231199340C33923547 @default.
- W4231199340 hasConceptScore W4231199340C41008148 @default.
- W4231199340 hasConceptScore W4231199340C47702885 @default.
- W4231199340 hasConceptScore W4231199340C50644808 @default.
- W4231199340 hasConceptScore W4231199340C62520636 @default.
- W4231199340 hasConceptScore W4231199340C84114770 @default.
- W4231199340 hasConceptScore W4231199340C8642999 @default.
- W4231199340 hasConceptScore W4231199340C86803240 @default.
- W4231199340 hasConceptScore W4231199340C91575142 @default.
- W4231199340 hasConceptScore W4231199340C9652623 @default.
- W4231199340 hasLocation W42311993401 @default.
- W4231199340 hasOpenAccess W4231199340 @default.
- W4231199340 hasPrimaryLocation W42311993401 @default.
- W4231199340 hasRelatedWork W1407330 @default.
- W4231199340 hasRelatedWork W1678066 @default.
- W4231199340 hasRelatedWork W2683128 @default.
- W4231199340 hasRelatedWork W6071106 @default.
- W4231199340 hasRelatedWork W8021486 @default.
- W4231199340 hasRelatedWork W8634255 @default.
- W4231199340 hasRelatedWork W9190101 @default.
- W4231199340 hasRelatedWork W9333608 @default.
- W4231199340 hasRelatedWork W13662937 @default.
- W4231199340 hasRelatedWork W351664 @default.
- W4231199340 isParatext "false" @default.
- W4231199340 isRetracted "false" @default.
- W4231199340 workType "article" @default.