Matches in SemOpenAlex for { <https://semopenalex.org/work/W4231356614> ?p ?o ?g. }
- W4231356614 endingPage "171051" @default.
- W4231356614 startingPage "171051" @default.
- W4231356614 abstract "Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material–enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery. © RSNA, 2018 Online supplemental material is available for this article." @default.
- W4231356614 created "2022-05-12" @default.
- W4231356614 creator A5001021793 @default.
- W4231356614 creator A5001583791 @default.
- W4231356614 creator A5002377294 @default.
- W4231356614 creator A5003270940 @default.
- W4231356614 creator A5007859367 @default.
- W4231356614 creator A5015021132 @default.
- W4231356614 creator A5019923069 @default.
- W4231356614 creator A5025050378 @default.
- W4231356614 creator A5031234504 @default.
- W4231356614 creator A5034797543 @default.
- W4231356614 creator A5037858782 @default.
- W4231356614 creator A5043415249 @default.
- W4231356614 creator A5048278111 @default.
- W4231356614 creator A5054498659 @default.
- W4231356614 creator A5055666953 @default.
- W4231356614 creator A5056717027 @default.
- W4231356614 creator A5060104107 @default.
- W4231356614 creator A5061443121 @default.
- W4231356614 creator A5070009384 @default.
- W4231356614 creator A5075344231 @default.
- W4231356614 creator A5086382555 @default.
- W4231356614 date "2018-04-03" @default.
- W4231356614 modified "2023-10-18" @default.
- W4231356614 title "Tumor Surface Regularity at MR Imaging Predicts Survival and Response to Surgery in Patients with Glioblastoma" @default.
- W4231356614 cites W1548288608 @default.
- W4231356614 cites W1860570320 @default.
- W4231356614 cites W1969707516 @default.
- W4231356614 cites W2041208813 @default.
- W4231356614 cites W2064214863 @default.
- W4231356614 cites W2074614782 @default.
- W4231356614 cites W2098753482 @default.
- W4231356614 cites W2103004421 @default.
- W4231356614 cites W2105054044 @default.
- W4231356614 cites W2131896426 @default.
- W4231356614 cites W2150676817 @default.
- W4231356614 cites W2169590480 @default.
- W4231356614 cites W2171860505 @default.
- W4231356614 cites W2174661749 @default.
- W4231356614 cites W2366536035 @default.
- W4231356614 cites W2400018948 @default.
- W4231356614 cites W2409649574 @default.
- W4231356614 cites W2464450508 @default.
- W4231356614 cites W2507699577 @default.
- W4231356614 cites W2510367179 @default.
- W4231356614 cites W2515401069 @default.
- W4231356614 cites W2571772009 @default.
- W4231356614 cites W2571825062 @default.
- W4231356614 cites W2593069390 @default.
- W4231356614 cites W2977474616 @default.
- W4231356614 cites W4233857083 @default.
- W4231356614 cites W590372015 @default.
- W4231356614 cites W639329202 @default.
- W4231356614 doi "https://doi.org/10.1148/radiol.201171051" @default.
- W4231356614 hasPublicationYear "2018" @default.
- W4231356614 type Work @default.
- W4231356614 citedByCount "7" @default.
- W4231356614 countsByYear W42313566142019 @default.
- W4231356614 countsByYear W42313566142020 @default.
- W4231356614 countsByYear W42313566142022 @default.
- W4231356614 crossrefType "journal-article" @default.
- W4231356614 hasAuthorship W4231356614A5001021793 @default.
- W4231356614 hasAuthorship W4231356614A5001583791 @default.
- W4231356614 hasAuthorship W4231356614A5002377294 @default.
- W4231356614 hasAuthorship W4231356614A5003270940 @default.
- W4231356614 hasAuthorship W4231356614A5007859367 @default.
- W4231356614 hasAuthorship W4231356614A5015021132 @default.
- W4231356614 hasAuthorship W4231356614A5019923069 @default.
- W4231356614 hasAuthorship W4231356614A5025050378 @default.
- W4231356614 hasAuthorship W4231356614A5031234504 @default.
- W4231356614 hasAuthorship W4231356614A5034797543 @default.
- W4231356614 hasAuthorship W4231356614A5037858782 @default.
- W4231356614 hasAuthorship W4231356614A5043415249 @default.
- W4231356614 hasAuthorship W4231356614A5048278111 @default.
- W4231356614 hasAuthorship W4231356614A5054498659 @default.
- W4231356614 hasAuthorship W4231356614A5055666953 @default.
- W4231356614 hasAuthorship W4231356614A5056717027 @default.
- W4231356614 hasAuthorship W4231356614A5060104107 @default.
- W4231356614 hasAuthorship W4231356614A5061443121 @default.
- W4231356614 hasAuthorship W4231356614A5070009384 @default.
- W4231356614 hasAuthorship W4231356614A5075344231 @default.
- W4231356614 hasAuthorship W4231356614A5086382555 @default.
- W4231356614 hasConcept C10515644 @default.
- W4231356614 hasConcept C126322002 @default.
- W4231356614 hasConcept C126838900 @default.
- W4231356614 hasConcept C143409427 @default.
- W4231356614 hasConcept C160798450 @default.
- W4231356614 hasConcept C207103383 @default.
- W4231356614 hasConcept C2776194525 @default.
- W4231356614 hasConcept C2989005 @default.
- W4231356614 hasConcept C38180746 @default.
- W4231356614 hasConcept C44249647 @default.
- W4231356614 hasConcept C502942594 @default.
- W4231356614 hasConcept C50382708 @default.
- W4231356614 hasConcept C71924100 @default.
- W4231356614 hasConcept C72563966 @default.
- W4231356614 hasConceptScore W4231356614C10515644 @default.