Matches in SemOpenAlex for { <https://semopenalex.org/work/W4231753670> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4231753670 endingPage "159" @default.
- W4231753670 startingPage "149" @default.
- W4231753670 abstract "This chapter focuses on how partial differential equations (PDE2D) are used to solve a very challenging nonlinear problem. The Kadomtsev-Petviashvili I (KPI) wave equation is used to model waves in thin films with high surface tension. This equation is solved using PDE2D's Galerkin method, with initial conditions consisting of two-lump solitons, which collide and reseparate. Since the solution has steep, moving peaks, an adaptive finite element grid is used with a grading that moves with the peaks. PDE2D does not actually allow the triangular grid to change with time. The improvised moving adaptive grid illustrates that PDE2D has “all the flexibility of Fortran”. The chapter expresses that the direct collision solution is not only quite noisy, but also the peaks are very far from where they should be. The fact that a uniform triangulation of 4800 cubic elements produces such a poor solution illustrates how difficult this nonlinear problem is." @default.
- W4231753670 created "2022-05-12" @default.
- W4231753670 date "2018-08-16" @default.
- W4231753670 modified "2023-10-12" @default.
- W4231753670 title "The KPI Wave Equation" @default.
- W4231753670 doi "https://doi.org/10.1002/9781119507918.ch9" @default.
- W4231753670 hasPublicationYear "2018" @default.
- W4231753670 type Work @default.
- W4231753670 citedByCount "0" @default.
- W4231753670 crossrefType "other" @default.
- W4231753670 hasConcept C121332964 @default.
- W4231753670 hasConcept C134306372 @default.
- W4231753670 hasConcept C135628077 @default.
- W4231753670 hasConcept C135981907 @default.
- W4231753670 hasConcept C158622935 @default.
- W4231753670 hasConcept C186899397 @default.
- W4231753670 hasConcept C187691185 @default.
- W4231753670 hasConcept C2524010 @default.
- W4231753670 hasConcept C28826006 @default.
- W4231753670 hasConcept C33923547 @default.
- W4231753670 hasConcept C62520636 @default.
- W4231753670 hasConcept C93779851 @default.
- W4231753670 hasConcept C97355855 @default.
- W4231753670 hasConceptScore W4231753670C121332964 @default.
- W4231753670 hasConceptScore W4231753670C134306372 @default.
- W4231753670 hasConceptScore W4231753670C135628077 @default.
- W4231753670 hasConceptScore W4231753670C135981907 @default.
- W4231753670 hasConceptScore W4231753670C158622935 @default.
- W4231753670 hasConceptScore W4231753670C186899397 @default.
- W4231753670 hasConceptScore W4231753670C187691185 @default.
- W4231753670 hasConceptScore W4231753670C2524010 @default.
- W4231753670 hasConceptScore W4231753670C28826006 @default.
- W4231753670 hasConceptScore W4231753670C33923547 @default.
- W4231753670 hasConceptScore W4231753670C62520636 @default.
- W4231753670 hasConceptScore W4231753670C93779851 @default.
- W4231753670 hasConceptScore W4231753670C97355855 @default.
- W4231753670 hasLocation W42317536701 @default.
- W4231753670 hasOpenAccess W4231753670 @default.
- W4231753670 hasPrimaryLocation W42317536701 @default.
- W4231753670 hasRelatedWork W1535358919 @default.
- W4231753670 hasRelatedWork W2039867343 @default.
- W4231753670 hasRelatedWork W2067621522 @default.
- W4231753670 hasRelatedWork W2168747096 @default.
- W4231753670 hasRelatedWork W2370302780 @default.
- W4231753670 hasRelatedWork W3174101689 @default.
- W4231753670 hasRelatedWork W4241226487 @default.
- W4231753670 hasRelatedWork W4241924370 @default.
- W4231753670 hasRelatedWork W4253722905 @default.
- W4231753670 hasRelatedWork W768569191 @default.
- W4231753670 isParatext "false" @default.
- W4231753670 isRetracted "false" @default.
- W4231753670 workType "other" @default.