Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232044418> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4232044418 abstract "In the data-mining field, many learning methods — such as association rules, Bayesian networks, and induction rules (Grzymala-Busse & Stefanowski, 2001) — can handle only discrete attributes. Therefore, before the machine-learning process, it is necessary to re-encode each continuous attribute in a discrete attribute constituted by a set of intervals. For example, the age attribute can be transformed in two discrete values representing two intervals: less than 18 (a minor) and 18 or greater. This process, known as discretization, is an essential task of the data preprocessing not only because some learning methods do not handle continuous attributes, but also for other important reasons. The data transformed in a set of intervals are more cognitively relevant for a human interpretation (Liu, Hussain, Tan, & Dash, 2002); the computation process goes faster with a reduced level of data, particularly when some attributes are suppressed from the representation space of the learning problem if it is impossible to find a relevant cut (Mittal & Cheong, 2002); the discretization can provide nonlinear relations — for example, the infants and the elderly people are more sensitive to illness. This relation between age and illness is then not linear — which is why many authors propose to discretize the data even if the learning method can handle continuous attributes (Frank & Witten, 1999). Lastly, discretization can harmonize the nature of the data if it is heterogeneous — for example, in text categorization, the attributes are a mix of numerical values and occurrence terms (Macskassy, Hirsh, Banerjee, & Dayanik, 2001). Request access from your librarian to read this chapter's full text." @default.
- W4232044418 created "2022-05-12" @default.
- W4232044418 creator A5003050761 @default.
- W4232044418 creator A5025112306 @default.
- W4232044418 date "2011-01-18" @default.
- W4232044418 modified "2023-10-16" @default.
- W4232044418 title "Discretization for Continuous Attributes" @default.
- W4232044418 doi "https://doi.org/10.4018/9781591405573.ch076" @default.
- W4232044418 hasPublicationYear "2011" @default.
- W4232044418 type Work @default.
- W4232044418 citedByCount "0" @default.
- W4232044418 crossrefType "book-chapter" @default.
- W4232044418 hasAuthorship W4232044418A5003050761 @default.
- W4232044418 hasAuthorship W4232044418A5025112306 @default.
- W4232044418 hasBestOaLocation W42320444182 @default.
- W4232044418 hasConcept C105427703 @default.
- W4232044418 hasConcept C111012933 @default.
- W4232044418 hasConcept C111919701 @default.
- W4232044418 hasConcept C119857082 @default.
- W4232044418 hasConcept C124101348 @default.
- W4232044418 hasConcept C126148662 @default.
- W4232044418 hasConcept C134306372 @default.
- W4232044418 hasConcept C154945302 @default.
- W4232044418 hasConcept C177264268 @default.
- W4232044418 hasConcept C17744445 @default.
- W4232044418 hasConcept C193524817 @default.
- W4232044418 hasConcept C199360897 @default.
- W4232044418 hasConcept C199539241 @default.
- W4232044418 hasConcept C2776359362 @default.
- W4232044418 hasConcept C33923547 @default.
- W4232044418 hasConcept C41008148 @default.
- W4232044418 hasConcept C58489278 @default.
- W4232044418 hasConcept C73000952 @default.
- W4232044418 hasConcept C94124525 @default.
- W4232044418 hasConcept C94625758 @default.
- W4232044418 hasConcept C98045186 @default.
- W4232044418 hasConceptScore W4232044418C105427703 @default.
- W4232044418 hasConceptScore W4232044418C111012933 @default.
- W4232044418 hasConceptScore W4232044418C111919701 @default.
- W4232044418 hasConceptScore W4232044418C119857082 @default.
- W4232044418 hasConceptScore W4232044418C124101348 @default.
- W4232044418 hasConceptScore W4232044418C126148662 @default.
- W4232044418 hasConceptScore W4232044418C134306372 @default.
- W4232044418 hasConceptScore W4232044418C154945302 @default.
- W4232044418 hasConceptScore W4232044418C177264268 @default.
- W4232044418 hasConceptScore W4232044418C17744445 @default.
- W4232044418 hasConceptScore W4232044418C193524817 @default.
- W4232044418 hasConceptScore W4232044418C199360897 @default.
- W4232044418 hasConceptScore W4232044418C199539241 @default.
- W4232044418 hasConceptScore W4232044418C2776359362 @default.
- W4232044418 hasConceptScore W4232044418C33923547 @default.
- W4232044418 hasConceptScore W4232044418C41008148 @default.
- W4232044418 hasConceptScore W4232044418C58489278 @default.
- W4232044418 hasConceptScore W4232044418C73000952 @default.
- W4232044418 hasConceptScore W4232044418C94124525 @default.
- W4232044418 hasConceptScore W4232044418C94625758 @default.
- W4232044418 hasConceptScore W4232044418C98045186 @default.
- W4232044418 hasLocation W42320444181 @default.
- W4232044418 hasLocation W42320444182 @default.
- W4232044418 hasLocation W42320444183 @default.
- W4232044418 hasLocation W42320444184 @default.
- W4232044418 hasLocation W42320444185 @default.
- W4232044418 hasLocation W42320444186 @default.
- W4232044418 hasLocation W42320444187 @default.
- W4232044418 hasOpenAccess W4232044418 @default.
- W4232044418 hasPrimaryLocation W42320444181 @default.
- W4232044418 hasRelatedWork W1522401498 @default.
- W4232044418 hasRelatedWork W1657653706 @default.
- W4232044418 hasRelatedWork W2049003905 @default.
- W4232044418 hasRelatedWork W2092171608 @default.
- W4232044418 hasRelatedWork W2112252788 @default.
- W4232044418 hasRelatedWork W2348794337 @default.
- W4232044418 hasRelatedWork W2362450124 @default.
- W4232044418 hasRelatedWork W2376165296 @default.
- W4232044418 hasRelatedWork W2406322706 @default.
- W4232044418 hasRelatedWork W2808402588 @default.
- W4232044418 isParatext "false" @default.
- W4232044418 isRetracted "false" @default.
- W4232044418 workType "book-chapter" @default.