Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232319323> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4232319323 abstract "Abstract Rockburst is a kind of complex and catastrophic dynamic geological disaster in the development and utilization of underground space, which seriously threatens the safety of personnel and environment. Due to the suddenness in time and randomness in space, the prediction of rockburst becomes a great challenge. Microseismic monitoring is capable to continuously capture rock microfracture signals in real time, which offers an effective means for rockburst prediction. With the explosive growth of monitoring data, the conventional manual forecasting methods are laborious and time-consuming. Therefore, artificial intelligence was introduced to improve the prediction efficiency. A novel tree-based algorithm was proposed. Its basic idea was to automatically recognize precursory microseismic sequences for the real-time prediction of rockburst intensity. The database consisting of 1500 microseismic events was analyzed. In order to establish precursory microseismic sequences, dimensionality reduction of the database was first implemented by t-SNE algorithm. Then, k -means clustering algorithm was employed for labelling 1500 microseismic events. Before that, canopy algorithm was adopted to determine the number of clusters. Finally, 300 precursory microseismic sequences were formed by grouping rule. They were further partitioned into two parts through stratified sampling: 70% for training and 30% for validation. The validation results indicated that the precursor tree with pruning achieved higher prediction accuracy of 98.9% than one without pruning on the validation set. And the increase was separately 12.2%, 9.2% and 28.6% on the whole validation set and each classes (low/moderate rockburst). In comparison with low rockburst, moderate rockburst was minority class. The improved accuracy on moderate rockburst suggested that pruning can enhance the recognition ability of precursor tree for minority class. Additionally, two extra rockburst cases were collected from a diversion tunnel in northwestern China, which provided a complete workflow about how to apply the built precursor tree model to achieve field rockburst warning in engineering practice. The tree-based algorithm served as a new and promising way for the real-time rockburst prediction, which successfully integrated field microseismic monitoring and artificial intelligence." @default.
- W4232319323 created "2022-05-12" @default.
- W4232319323 creator A5008576539 @default.
- W4232319323 creator A5043485375 @default.
- W4232319323 creator A5064692524 @default.
- W4232319323 creator A5073620839 @default.
- W4232319323 date "2021-07-29" @default.
- W4232319323 modified "2023-09-28" @default.
- W4232319323 title "A novel tree-based algorithm for real-time prediction of rockburst risk using field microseismic monitoring" @default.
- W4232319323 doi "https://doi.org/10.21203/rs.3.rs-188500/v1" @default.
- W4232319323 hasPublicationYear "2021" @default.
- W4232319323 type Work @default.
- W4232319323 citedByCount "0" @default.
- W4232319323 crossrefType "posted-content" @default.
- W4232319323 hasAuthorship W4232319323A5008576539 @default.
- W4232319323 hasAuthorship W4232319323A5043485375 @default.
- W4232319323 hasAuthorship W4232319323A5064692524 @default.
- W4232319323 hasAuthorship W4232319323A5073620839 @default.
- W4232319323 hasBestOaLocation W42323193231 @default.
- W4232319323 hasConcept C108010975 @default.
- W4232319323 hasConcept C113174947 @default.
- W4232319323 hasConcept C11413529 @default.
- W4232319323 hasConcept C124101348 @default.
- W4232319323 hasConcept C127313418 @default.
- W4232319323 hasConcept C134306372 @default.
- W4232319323 hasConcept C154945302 @default.
- W4232319323 hasConcept C165205528 @default.
- W4232319323 hasConcept C177264268 @default.
- W4232319323 hasConcept C199360897 @default.
- W4232319323 hasConcept C33923547 @default.
- W4232319323 hasConcept C41008148 @default.
- W4232319323 hasConcept C6557445 @default.
- W4232319323 hasConcept C7266685 @default.
- W4232319323 hasConcept C86803240 @default.
- W4232319323 hasConceptScore W4232319323C108010975 @default.
- W4232319323 hasConceptScore W4232319323C113174947 @default.
- W4232319323 hasConceptScore W4232319323C11413529 @default.
- W4232319323 hasConceptScore W4232319323C124101348 @default.
- W4232319323 hasConceptScore W4232319323C127313418 @default.
- W4232319323 hasConceptScore W4232319323C134306372 @default.
- W4232319323 hasConceptScore W4232319323C154945302 @default.
- W4232319323 hasConceptScore W4232319323C165205528 @default.
- W4232319323 hasConceptScore W4232319323C177264268 @default.
- W4232319323 hasConceptScore W4232319323C199360897 @default.
- W4232319323 hasConceptScore W4232319323C33923547 @default.
- W4232319323 hasConceptScore W4232319323C41008148 @default.
- W4232319323 hasConceptScore W4232319323C6557445 @default.
- W4232319323 hasConceptScore W4232319323C7266685 @default.
- W4232319323 hasConceptScore W4232319323C86803240 @default.
- W4232319323 hasLocation W42323193231 @default.
- W4232319323 hasOpenAccess W4232319323 @default.
- W4232319323 hasPrimaryLocation W42323193231 @default.
- W4232319323 hasRelatedWork W1510682440 @default.
- W4232319323 hasRelatedWork W2014706981 @default.
- W4232319323 hasRelatedWork W2017494415 @default.
- W4232319323 hasRelatedWork W2083172146 @default.
- W4232319323 hasRelatedWork W2171980985 @default.
- W4232319323 hasRelatedWork W2358841807 @default.
- W4232319323 hasRelatedWork W2363307868 @default.
- W4232319323 hasRelatedWork W2557672350 @default.
- W4232319323 hasRelatedWork W3191059018 @default.
- W4232319323 hasRelatedWork W4311761935 @default.
- W4232319323 isParatext "false" @default.
- W4232319323 isRetracted "false" @default.
- W4232319323 workType "article" @default.