Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232453337> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4232453337 abstract "In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13 C α - 13 C β couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data." @default.
- W4232453337 created "2022-05-12" @default.
- W4232453337 creator A5008081293 @default.
- W4232453337 creator A5033560257 @default.
- W4232453337 date "2020-12-08" @default.
- W4232453337 modified "2023-10-16" @default.
- W4232453337 title "FID-Net: A Versatile Deep Neural Network Architecture for NMR Spectral Reconstruction and Virtual Decoupling" @default.
- W4232453337 doi "https://doi.org/10.26434/chemrxiv.13295888.v2" @default.
- W4232453337 hasPublicationYear "2020" @default.
- W4232453337 type Work @default.
- W4232453337 citedByCount "0" @default.
- W4232453337 crossrefType "posted-content" @default.
- W4232453337 hasAuthorship W4232453337A5008081293 @default.
- W4232453337 hasAuthorship W4232453337A5033560257 @default.
- W4232453337 hasBestOaLocation W42324533371 @default.
- W4232453337 hasConcept C121332964 @default.
- W4232453337 hasConcept C123657996 @default.
- W4232453337 hasConcept C124101348 @default.
- W4232453337 hasConcept C127413603 @default.
- W4232453337 hasConcept C1276947 @default.
- W4232453337 hasConcept C133731056 @default.
- W4232453337 hasConcept C142362112 @default.
- W4232453337 hasConcept C153180895 @default.
- W4232453337 hasConcept C153349607 @default.
- W4232453337 hasConcept C154945302 @default.
- W4232453337 hasConcept C159985019 @default.
- W4232453337 hasConcept C192562407 @default.
- W4232453337 hasConcept C193415008 @default.
- W4232453337 hasConcept C199360897 @default.
- W4232453337 hasConcept C204323151 @default.
- W4232453337 hasConcept C205606062 @default.
- W4232453337 hasConcept C2778012447 @default.
- W4232453337 hasConcept C2984842247 @default.
- W4232453337 hasConcept C31258907 @default.
- W4232453337 hasConcept C41008148 @default.
- W4232453337 hasConcept C4839761 @default.
- W4232453337 hasConcept C50644808 @default.
- W4232453337 hasConcept C67787023 @default.
- W4232453337 hasConceptScore W4232453337C121332964 @default.
- W4232453337 hasConceptScore W4232453337C123657996 @default.
- W4232453337 hasConceptScore W4232453337C124101348 @default.
- W4232453337 hasConceptScore W4232453337C127413603 @default.
- W4232453337 hasConceptScore W4232453337C1276947 @default.
- W4232453337 hasConceptScore W4232453337C133731056 @default.
- W4232453337 hasConceptScore W4232453337C142362112 @default.
- W4232453337 hasConceptScore W4232453337C153180895 @default.
- W4232453337 hasConceptScore W4232453337C153349607 @default.
- W4232453337 hasConceptScore W4232453337C154945302 @default.
- W4232453337 hasConceptScore W4232453337C159985019 @default.
- W4232453337 hasConceptScore W4232453337C192562407 @default.
- W4232453337 hasConceptScore W4232453337C193415008 @default.
- W4232453337 hasConceptScore W4232453337C199360897 @default.
- W4232453337 hasConceptScore W4232453337C204323151 @default.
- W4232453337 hasConceptScore W4232453337C205606062 @default.
- W4232453337 hasConceptScore W4232453337C2778012447 @default.
- W4232453337 hasConceptScore W4232453337C2984842247 @default.
- W4232453337 hasConceptScore W4232453337C31258907 @default.
- W4232453337 hasConceptScore W4232453337C41008148 @default.
- W4232453337 hasConceptScore W4232453337C4839761 @default.
- W4232453337 hasConceptScore W4232453337C50644808 @default.
- W4232453337 hasConceptScore W4232453337C67787023 @default.
- W4232453337 hasLocation W42324533371 @default.
- W4232453337 hasLocation W42324533372 @default.
- W4232453337 hasLocation W42324533373 @default.
- W4232453337 hasLocation W42324533374 @default.
- W4232453337 hasLocation W42324533375 @default.
- W4232453337 hasOpenAccess W4232453337 @default.
- W4232453337 hasPrimaryLocation W42324533371 @default.
- W4232453337 hasRelatedWork W1264468313 @default.
- W4232453337 hasRelatedWork W2033914206 @default.
- W4232453337 hasRelatedWork W2062862734 @default.
- W4232453337 hasRelatedWork W2146076056 @default.
- W4232453337 hasRelatedWork W2163831990 @default.
- W4232453337 hasRelatedWork W2350154822 @default.
- W4232453337 hasRelatedWork W2386387936 @default.
- W4232453337 hasRelatedWork W2952433966 @default.
- W4232453337 hasRelatedWork W3003836766 @default.
- W4232453337 hasRelatedWork W4200276911 @default.
- W4232453337 isParatext "false" @default.
- W4232453337 isRetracted "false" @default.
- W4232453337 workType "article" @default.