Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232679080> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4232679080 abstract "1 Rapid expansion in the collection of large acoustic datasets to answer ecological questions has generated a parallel requirement for techniques that streamline analysis of these datasets. In many cases, automated signal recognition algorithms, often termed 'call recognizers', are the only feasible option for doing this. To date, most research has focused on what types of recognizers perform best, and how to train these recognizers to optimize performance.2 We demonstrate that once recognizer construction is complete and the data processed, further improvements are possible using intrinsic and contextual information associated with each detection. We initially construct a call recognizer for the Night ParrotPezoporus occidentalisusing therpackagemonitoR, and scan a test dataset. We then examine a number of intrinsic variables associated with each detection generated by the recognizer, and several contextual variables associated with the species' environment and ecology, to determine if they might help predict whether a given detection is a true positive (target signal) or false positive (non-target signal). We test several logistic regression models incorporating different combinations of intrinsic and contextual variables, selecting the best-performing model for application. We train the model, using it to calculate the probability each detection is a true or false positive.3 Substituting this model-derived probability for raw recognizer score improved the recognizer's performance, reducing the number of detections requiring proofing by 60% to achieve a recall of 90%, and by 76% to achieve a recall of 75%.4 This technique is applicable to any recognizer output, regardless of the underlying algorithm. Application requires an understanding of how the recognizer algorithm determines matches, and knowledge of a species' ecology and environment. Because advanced programming skills and expertise are not required to apply this technique, it will be particularly relevant to field ecologists for whom building and operating call recognizers is an element of their research toolbox, but not necessarily a focus." @default.
- W4232679080 created "2022-05-12" @default.
- W4232679080 date "2020-07-13" @default.
- W4232679080 modified "2023-09-23" @default.
- W4232679080 title "Decision letter for Using intrinsic and contextual information associated with automated signal detections to improve call recogniser performance: a case study using the cryptic and critically endangered Night Parrot ( <i>Pezoporus occidentalis</i> )" @default.
- W4232679080 doi "https://doi.org/10.1111/2041-210x.13475/v1/decision1" @default.
- W4232679080 hasPublicationYear "2020" @default.
- W4232679080 type Work @default.
- W4232679080 citedByCount "0" @default.
- W4232679080 crossrefType "peer-review" @default.
- W4232679080 hasConcept C100660578 @default.
- W4232679080 hasConcept C119857082 @default.
- W4232679080 hasConcept C138885662 @default.
- W4232679080 hasConcept C153180895 @default.
- W4232679080 hasConcept C154945302 @default.
- W4232679080 hasConcept C199360897 @default.
- W4232679080 hasConcept C2779843651 @default.
- W4232679080 hasConcept C2780801425 @default.
- W4232679080 hasConcept C28490314 @default.
- W4232679080 hasConcept C41008148 @default.
- W4232679080 hasConcept C41895202 @default.
- W4232679080 hasConcept C81669768 @default.
- W4232679080 hasConceptScore W4232679080C100660578 @default.
- W4232679080 hasConceptScore W4232679080C119857082 @default.
- W4232679080 hasConceptScore W4232679080C138885662 @default.
- W4232679080 hasConceptScore W4232679080C153180895 @default.
- W4232679080 hasConceptScore W4232679080C154945302 @default.
- W4232679080 hasConceptScore W4232679080C199360897 @default.
- W4232679080 hasConceptScore W4232679080C2779843651 @default.
- W4232679080 hasConceptScore W4232679080C2780801425 @default.
- W4232679080 hasConceptScore W4232679080C28490314 @default.
- W4232679080 hasConceptScore W4232679080C41008148 @default.
- W4232679080 hasConceptScore W4232679080C41895202 @default.
- W4232679080 hasConceptScore W4232679080C81669768 @default.
- W4232679080 hasLocation W42326790801 @default.
- W4232679080 hasOpenAccess W4232679080 @default.
- W4232679080 hasPrimaryLocation W42326790801 @default.
- W4232679080 hasRelatedWork W2327992947 @default.
- W4232679080 hasRelatedWork W3001086177 @default.
- W4232679080 hasRelatedWork W3001914297 @default.
- W4232679080 hasRelatedWork W3002297424 @default.
- W4232679080 hasRelatedWork W3049603541 @default.
- W4232679080 hasRelatedWork W3091222497 @default.
- W4232679080 hasRelatedWork W3154941836 @default.
- W4232679080 hasRelatedWork W3197696342 @default.
- W4232679080 hasRelatedWork W4313444831 @default.
- W4232679080 hasRelatedWork W4319007834 @default.
- W4232679080 isParatext "false" @default.
- W4232679080 isRetracted "false" @default.
- W4232679080 workType "peer-review" @default.