Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232773295> ?p ?o ?g. }
- W4232773295 abstract "<sec> <title>BACKGROUND</title> Electronic health records (EHRs) bring many opportunities for information utilization. One such use is the surveillance conducted by the Centers for Disease Control and Prevention to track cases of autism spectrum disorder (ASD). This process currently comprises manual collection and review of EHRs of 4- and 8-year old children in 11 US states for the presence of ASD criteria. The work is time-consuming and expensive. </sec> <sec> <title>OBJECTIVE</title> Our objective was to automatically extract from EHRs the description of behaviors noted by the clinicians in evidence of the diagnostic criteria in the Diagnostic and Statistical Manual of Mental Disorders (DSM). Previously, we reported on the classification of entire EHRs as ASD or not. In this work, we focus on the extraction of individual expressions of the different ASD criteria in the text. We intend to facilitate large-scale surveillance efforts for ASD and support analysis of changes over time as well as enable integration with other relevant data. </sec> <sec> <title>METHODS</title> We developed a natural language processing (NLP) parser to extract expressions of 12 DSM criteria using 104 patterns and 92 lexicons (1787 terms). The parser is rule-based to enable precise extraction of the entities from the text. The entities themselves are encompassed in the EHRs as very diverse expressions of the diagnostic criteria written by different people at different times (clinicians, speech pathologists, among others). Due to the sparsity of the data, a rule-based approach is best suited until larger datasets can be generated for machine learning algorithms. </sec> <sec> <title>RESULTS</title> We evaluated our rule-based parser and compared it with a machine learning baseline (decision tree). Using a test set of 6636 sentences (50 EHRs), we found that our parser achieved 76% precision, 43% recall (ie, sensitivity), and >99% specificity for criterion extraction. The performance was better for the rule-based approach than for the machine learning baseline (60% precision and 30% recall). For some individual criteria, precision was as high as 97% and recall 57%. Since precision was very high, we were assured that criteria were rarely assigned incorrectly, and our numbers presented a lower bound of their presence in EHRs. We then conducted a case study and parsed 4480 new EHRs covering 10 years of surveillance records from the Arizona Developmental Disabilities Surveillance Program. The social criteria (A1 criteria) showed the biggest change over the years. The communication criteria (A2 criteria) did not distinguish the ASD from the non-ASD records. Among behaviors and interests criteria (A3 criteria), 1 (A3b) was present with much greater frequency in the ASD than in the non-ASD EHRs. </sec> <sec> <title>CONCLUSIONS</title> Our results demonstrate that NLP can support large-scale analysis useful for ASD surveillance and research. In the future, we intend to facilitate detailed analysis and integration of national datasets. </sec>" @default.
- W4232773295 created "2022-05-12" @default.
- W4232773295 creator A5002916030 @default.
- W4232773295 creator A5006596434 @default.
- W4232773295 creator A5035329957 @default.
- W4232773295 creator A5044036675 @default.
- W4232773295 creator A5070859841 @default.
- W4232773295 creator A5075750924 @default.
- W4232773295 date "2018-03-25" @default.
- W4232773295 modified "2023-10-18" @default.
- W4232773295 title "Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application (Preprint)" @default.
- W4232773295 cites W1747861911 @default.
- W4232773295 cites W1791323137 @default.
- W4232773295 cites W1970007934 @default.
- W4232773295 cites W1996430422 @default.
- W4232773295 cites W1996820190 @default.
- W4232773295 cites W2004901502 @default.
- W4232773295 cites W2009297555 @default.
- W4232773295 cites W2040298842 @default.
- W4232773295 cites W2112454182 @default.
- W4232773295 cites W2116972916 @default.
- W4232773295 cites W2119838335 @default.
- W4232773295 cites W2126092816 @default.
- W4232773295 cites W2127546476 @default.
- W4232773295 cites W2133891196 @default.
- W4232773295 cites W2151025545 @default.
- W4232773295 cites W2178396488 @default.
- W4232773295 cites W2488962145 @default.
- W4232773295 cites W2514569305 @default.
- W4232773295 cites W2558388417 @default.
- W4232773295 cites W2570301947 @default.
- W4232773295 cites W2591124240 @default.
- W4232773295 cites W2790551111 @default.
- W4232773295 cites W2194609483 @default.
- W4232773295 doi "https://doi.org/10.2196/preprints.10497" @default.
- W4232773295 hasPublicationYear "2018" @default.
- W4232773295 type Work @default.
- W4232773295 citedByCount "0" @default.
- W4232773295 crossrefType "posted-content" @default.
- W4232773295 hasAuthorship W4232773295A5002916030 @default.
- W4232773295 hasAuthorship W4232773295A5006596434 @default.
- W4232773295 hasAuthorship W4232773295A5035329957 @default.
- W4232773295 hasAuthorship W4232773295A5044036675 @default.
- W4232773295 hasAuthorship W4232773295A5070859841 @default.
- W4232773295 hasAuthorship W4232773295A5075750924 @default.
- W4232773295 hasBestOaLocation W42327732952 @default.
- W4232773295 hasConcept C118552586 @default.
- W4232773295 hasConcept C119857082 @default.
- W4232773295 hasConcept C124101348 @default.
- W4232773295 hasConcept C136764020 @default.
- W4232773295 hasConcept C154945302 @default.
- W4232773295 hasConcept C160735492 @default.
- W4232773295 hasConcept C162324750 @default.
- W4232773295 hasConcept C17744445 @default.
- W4232773295 hasConcept C186644900 @default.
- W4232773295 hasConcept C195807954 @default.
- W4232773295 hasConcept C199539241 @default.
- W4232773295 hasConcept C204321447 @default.
- W4232773295 hasConcept C205778803 @default.
- W4232773295 hasConcept C23123220 @default.
- W4232773295 hasConcept C2522767166 @default.
- W4232773295 hasConcept C2777466982 @default.
- W4232773295 hasConcept C2778538070 @default.
- W4232773295 hasConcept C2779473830 @default.
- W4232773295 hasConcept C3019952477 @default.
- W4232773295 hasConcept C41008148 @default.
- W4232773295 hasConcept C43169469 @default.
- W4232773295 hasConcept C50522688 @default.
- W4232773295 hasConcept C71924100 @default.
- W4232773295 hasConceptScore W4232773295C118552586 @default.
- W4232773295 hasConceptScore W4232773295C119857082 @default.
- W4232773295 hasConceptScore W4232773295C124101348 @default.
- W4232773295 hasConceptScore W4232773295C136764020 @default.
- W4232773295 hasConceptScore W4232773295C154945302 @default.
- W4232773295 hasConceptScore W4232773295C160735492 @default.
- W4232773295 hasConceptScore W4232773295C162324750 @default.
- W4232773295 hasConceptScore W4232773295C17744445 @default.
- W4232773295 hasConceptScore W4232773295C186644900 @default.
- W4232773295 hasConceptScore W4232773295C195807954 @default.
- W4232773295 hasConceptScore W4232773295C199539241 @default.
- W4232773295 hasConceptScore W4232773295C204321447 @default.
- W4232773295 hasConceptScore W4232773295C205778803 @default.
- W4232773295 hasConceptScore W4232773295C23123220 @default.
- W4232773295 hasConceptScore W4232773295C2522767166 @default.
- W4232773295 hasConceptScore W4232773295C2777466982 @default.
- W4232773295 hasConceptScore W4232773295C2778538070 @default.
- W4232773295 hasConceptScore W4232773295C2779473830 @default.
- W4232773295 hasConceptScore W4232773295C3019952477 @default.
- W4232773295 hasConceptScore W4232773295C41008148 @default.
- W4232773295 hasConceptScore W4232773295C43169469 @default.
- W4232773295 hasConceptScore W4232773295C50522688 @default.
- W4232773295 hasConceptScore W4232773295C71924100 @default.
- W4232773295 hasLocation W42327732951 @default.
- W4232773295 hasLocation W42327732952 @default.
- W4232773295 hasOpenAccess W4232773295 @default.
- W4232773295 hasPrimaryLocation W42327732951 @default.
- W4232773295 hasRelatedWork W11155487 @default.
- W4232773295 hasRelatedWork W11244355 @default.
- W4232773295 hasRelatedWork W14808 @default.
- W4232773295 hasRelatedWork W14942459 @default.