Matches in SemOpenAlex for { <https://semopenalex.org/work/W4232858453> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4232858453 abstract "ABSTRACT The deposition of solid material from the gas phase via chemical vapor transport (CVT) is a well-known process of industrial and geochemical relevance. There is strong evidence that this type of thermodynamically driven chemical transport reaction plays a significant role in certain natural processes. This article presents detailed evidence that CVT is a highly plausible mechanism for the formation of iron meteorites. In this study, naturally occurring CVT is referred to as “chemical fluid transport” (CFT) and the end products deposited from the gas phase as “fluidites.” Treating iron meteorites as cosmic fluidites enables simple solutions to be found to the problem of how they formed and to numerous related and in some cases unresolved questions. This study is based on a thermodynamic trend analysis of solid–gas equilibrium reactions involving chlorine- and fluorine-containing compounds of 42 chemical elements that include a systematic examination of reaction dominance switching behavior. In order to assess the transport behavior of the individual elements, the reaction-conditioned pressures p MeX were calculated from the equilibrium constants. For a selected group of minerals, the relative propensity of these minerals to deposit from the gas phase was then derived from the equilibrium constants. The study shows that octahedrites, hexahedrites and ataxites formed as a result of the transport of metal chlorides and fluorides (CFT) during accretion within the solar nebula. Siderophile elements are characterized by the similarities in their chemical transport properties. These chemical properties of the elements, expressed in the form of the reaction-conditioned pressure, play a key role in determining the chemical composition of iron meteorites. The mobilization process that leads to the formation of the gaseous metal halides MeX includes the reduction of oxides. The deposition of nickel–iron bodies occurs via back reaction after the transport of the gaseous halides. The back reaction leads to the thermodynamically favored deposition of schreibersite before troilite and of troilite before kamacite/taenite. The deposition temperature of octahedrites and hexahedrites lies below the temperature at which Widmanstätten patterns would be destroyed, while that of ataxites lies slightly above. Similarly, the occurrence of thermally instable cohenite in meteorites provides further support for the fluidite character of irons. The variation in the trace element concentrations in iron meteorites is explained by enrichment and depletion mechanisms in the gas phase. The striking correlation between gallium and germanium abundances in iron meteorites is the result of similarities regarding the mobilization phase and the reaction dominance switching behavior of both elements, and crystal isomorphism. These findings are supported by numerous arguments that provide evidence for the CFT model. The occurrence of the mineral lawrencite FeCl 2 in meteorites is interpreted as an indication of the effectiveness of the chemical transport of FeCl 2 . The presence of meteorite alteration and the observed deviations from the solar elemental abundances in silicate meteorites are also explained in terms of the effectiveness of CFT-based mobilization." @default.
- W4232858453 created "2022-05-12" @default.
- W4232858453 creator A5021235524 @default.
- W4232858453 date "2019-01-01" @default.
- W4232858453 modified "2023-09-26" @default.
- W4232858453 title "Formation of nickel–iron meteorites by chemical fluid transport" @default.
- W4232858453 cites W1479742372 @default.
- W4232858453 cites W1615974940 @default.
- W4232858453 cites W1977457396 @default.
- W4232858453 cites W1988041961 @default.
- W4232858453 cites W1998993699 @default.
- W4232858453 cites W2006859947 @default.
- W4232858453 cites W2014253442 @default.
- W4232858453 cites W2031054266 @default.
- W4232858453 cites W2034819694 @default.
- W4232858453 cites W2035704668 @default.
- W4232858453 cites W2037503004 @default.
- W4232858453 cites W2044375105 @default.
- W4232858453 cites W2044480261 @default.
- W4232858453 cites W2047730854 @default.
- W4232858453 cites W2053196564 @default.
- W4232858453 cites W2053737275 @default.
- W4232858453 cites W2059163403 @default.
- W4232858453 cites W2060568300 @default.
- W4232858453 cites W2061852120 @default.
- W4232858453 cites W2063065758 @default.
- W4232858453 cites W2065123560 @default.
- W4232858453 cites W2070718284 @default.
- W4232858453 cites W2074260509 @default.
- W4232858453 cites W2083305310 @default.
- W4232858453 cites W2088680825 @default.
- W4232858453 cites W2095833367 @default.
- W4232858453 cites W2099711290 @default.
- W4232858453 cites W2102530828 @default.
- W4232858453 cites W2116535805 @default.
- W4232858453 cites W2123531734 @default.
- W4232858453 cites W2135137164 @default.
- W4232858453 cites W2149697460 @default.
- W4232858453 cites W2152785070 @default.
- W4232858453 cites W2162238200 @default.
- W4232858453 cites W2328708452 @default.
- W4232858453 cites W2995510397 @default.
- W4232858453 cites W3099660194 @default.
- W4232858453 cites W4230799635 @default.
- W4232858453 cites W4245743663 @default.
- W4232858453 cites W4255477736 @default.
- W4232858453 cites W86818743 @default.
- W4232858453 doi "https://doi.org/10.14293/s2199-1006.1.sor-earth.a2tia5.v3" @default.
- W4232858453 hasPublicationYear "2019" @default.
- W4232858453 type Work @default.
- W4232858453 citedByCount "0" @default.
- W4232858453 crossrefType "journal-article" @default.
- W4232858453 hasAuthorship W4232858453A5021235524 @default.
- W4232858453 hasBestOaLocation W42328584531 @default.
- W4232858453 hasConcept C10710636 @default.
- W4232858453 hasConcept C121332964 @default.
- W4232858453 hasConcept C130635790 @default.
- W4232858453 hasConcept C147789679 @default.
- W4232858453 hasConcept C177801218 @default.
- W4232858453 hasConcept C178790620 @default.
- W4232858453 hasConcept C185592680 @default.
- W4232858453 hasConcept C192562407 @default.
- W4232858453 hasConcept C504270822 @default.
- W4232858453 hasConcept C73051877 @default.
- W4232858453 hasConcept C87355193 @default.
- W4232858453 hasConcept C97355855 @default.
- W4232858453 hasConceptScore W4232858453C10710636 @default.
- W4232858453 hasConceptScore W4232858453C121332964 @default.
- W4232858453 hasConceptScore W4232858453C130635790 @default.
- W4232858453 hasConceptScore W4232858453C147789679 @default.
- W4232858453 hasConceptScore W4232858453C177801218 @default.
- W4232858453 hasConceptScore W4232858453C178790620 @default.
- W4232858453 hasConceptScore W4232858453C185592680 @default.
- W4232858453 hasConceptScore W4232858453C192562407 @default.
- W4232858453 hasConceptScore W4232858453C504270822 @default.
- W4232858453 hasConceptScore W4232858453C73051877 @default.
- W4232858453 hasConceptScore W4232858453C87355193 @default.
- W4232858453 hasConceptScore W4232858453C97355855 @default.
- W4232858453 hasIssue "0" @default.
- W4232858453 hasLocation W42328584531 @default.
- W4232858453 hasLocation W42328584532 @default.
- W4232858453 hasOpenAccess W4232858453 @default.
- W4232858453 hasPrimaryLocation W42328584531 @default.
- W4232858453 hasRelatedWork W1572121406 @default.
- W4232858453 hasRelatedWork W1924326210 @default.
- W4232858453 hasRelatedWork W2023289999 @default.
- W4232858453 hasRelatedWork W2058864653 @default.
- W4232858453 hasRelatedWork W2207287309 @default.
- W4232858453 hasRelatedWork W2358848695 @default.
- W4232858453 hasRelatedWork W2373653334 @default.
- W4232858453 hasRelatedWork W2888646013 @default.
- W4232858453 hasRelatedWork W4236877645 @default.
- W4232858453 hasRelatedWork W4240790139 @default.
- W4232858453 hasVolume "0" @default.
- W4232858453 isParatext "false" @default.
- W4232858453 isRetracted "false" @default.
- W4232858453 workType "article" @default.