Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233069070> ?p ?o ?g. }
- W4233069070 endingPage "412" @default.
- W4233069070 startingPage "404" @default.
- W4233069070 abstract "Natural Language Processing techniques are constantly being advanced to accommodate the influx of data as well as to provide exhaustive and structured knowledge dissemination. Within the biomedical domain, relation detection between bio-entities known as the Bio-Entity Relation Extraction (BRE) task has a critical function in knowledge structuring. Although recent advances in deep learning-based biomedical domain embedding have improved BRE predictive analytics, these works are often task selective or use external knowledge-based pre-/post-processing. In addition, deep learning-based models do not account for local syntactic contexts, which have improved data representation in many kernel classifier-based models. In this study, we propose a universal BRE model, i.e. LBERT, which is a Lexically aware Transformer-based Bidirectional Encoder Representation model, and which explores both local and global contexts representations for sentence-level classification tasks.This article presents one of the most exhaustive BRE studies ever conducted over five different bio-entity relation types. Our model outperforms state-of-the-art deep learning models in protein-protein interaction (PPI), drug-drug interaction and protein-bio-entity relation classification tasks by 0.02%, 11.2% and 41.4%, respectively. LBERT representations show a statistically significant improvement over BioBERT in detecting true bio-entity relation for large corpora like PPI. Our ablation studies clearly indicate the contribution of the lexical features and distance-adjusted attention in improving prediction performance by learning additional local semantic context along with bi-directionally learned global context.Github. https://github.com/warikoone/LBERT.Supplementary data are available at Bioinformatics online." @default.
- W4233069070 created "2022-05-12" @default.
- W4233069070 creator A5018928362 @default.
- W4233069070 creator A5021745312 @default.
- W4233069070 creator A5064938075 @default.
- W4233069070 date "2020-08-18" @default.
- W4233069070 modified "2023-10-17" @default.
- W4233069070 title "LBERT: Lexically aware Transformer-based Bidirectional Encoder Representation model for learning universal bio-entity relations" @default.
- W4233069070 cites W1538085078 @default.
- W4233069070 cites W2052217781 @default.
- W4233069070 cites W2064299012 @default.
- W4233069070 cites W2067704478 @default.
- W4233069070 cites W2108791029 @default.
- W4233069070 cites W2118864375 @default.
- W4233069070 cites W2121844933 @default.
- W4233069070 cites W2136437513 @default.
- W4233069070 cites W2166111585 @default.
- W4233069070 cites W2170189740 @default.
- W4233069070 cites W2485374661 @default.
- W4233069070 cites W2512456704 @default.
- W4233069070 cites W2565076951 @default.
- W4233069070 cites W2734608416 @default.
- W4233069070 cites W2766673096 @default.
- W4233069070 cites W2809349863 @default.
- W4233069070 cites W2883380892 @default.
- W4233069070 cites W2883749461 @default.
- W4233069070 cites W2884668708 @default.
- W4233069070 cites W2896378533 @default.
- W4233069070 cites W2904726360 @default.
- W4233069070 cites W2913694513 @default.
- W4233069070 cites W2960293113 @default.
- W4233069070 cites W2962739339 @default.
- W4233069070 cites W4251294798 @default.
- W4233069070 cites W4252684946 @default.
- W4233069070 doi "https://doi.org/10.1093/bioinformatics/btaa721" @default.
- W4233069070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32810217" @default.
- W4233069070 hasPublicationYear "2020" @default.
- W4233069070 type Work @default.
- W4233069070 citedByCount "10" @default.
- W4233069070 countsByYear W42330690702021 @default.
- W4233069070 countsByYear W42330690702022 @default.
- W4233069070 countsByYear W42330690702023 @default.
- W4233069070 crossrefType "journal-article" @default.
- W4233069070 hasAuthorship W4233069070A5018928362 @default.
- W4233069070 hasAuthorship W4233069070A5021745312 @default.
- W4233069070 hasAuthorship W4233069070A5064938075 @default.
- W4233069070 hasConcept C101738243 @default.
- W4233069070 hasConcept C108583219 @default.
- W4233069070 hasConcept C111919701 @default.
- W4233069070 hasConcept C118505674 @default.
- W4233069070 hasConcept C119857082 @default.
- W4233069070 hasConcept C121332964 @default.
- W4233069070 hasConcept C124101348 @default.
- W4233069070 hasConcept C153604712 @default.
- W4233069070 hasConcept C154945302 @default.
- W4233069070 hasConcept C165801399 @default.
- W4233069070 hasConcept C195807954 @default.
- W4233069070 hasConcept C204321447 @default.
- W4233069070 hasConcept C207685749 @default.
- W4233069070 hasConcept C25343380 @default.
- W4233069070 hasConcept C2777530160 @default.
- W4233069070 hasConcept C41008148 @default.
- W4233069070 hasConcept C59404180 @default.
- W4233069070 hasConcept C62520636 @default.
- W4233069070 hasConcept C66322947 @default.
- W4233069070 hasConcept C95623464 @default.
- W4233069070 hasConceptScore W4233069070C101738243 @default.
- W4233069070 hasConceptScore W4233069070C108583219 @default.
- W4233069070 hasConceptScore W4233069070C111919701 @default.
- W4233069070 hasConceptScore W4233069070C118505674 @default.
- W4233069070 hasConceptScore W4233069070C119857082 @default.
- W4233069070 hasConceptScore W4233069070C121332964 @default.
- W4233069070 hasConceptScore W4233069070C124101348 @default.
- W4233069070 hasConceptScore W4233069070C153604712 @default.
- W4233069070 hasConceptScore W4233069070C154945302 @default.
- W4233069070 hasConceptScore W4233069070C165801399 @default.
- W4233069070 hasConceptScore W4233069070C195807954 @default.
- W4233069070 hasConceptScore W4233069070C204321447 @default.
- W4233069070 hasConceptScore W4233069070C207685749 @default.
- W4233069070 hasConceptScore W4233069070C25343380 @default.
- W4233069070 hasConceptScore W4233069070C2777530160 @default.
- W4233069070 hasConceptScore W4233069070C41008148 @default.
- W4233069070 hasConceptScore W4233069070C59404180 @default.
- W4233069070 hasConceptScore W4233069070C62520636 @default.
- W4233069070 hasConceptScore W4233069070C66322947 @default.
- W4233069070 hasConceptScore W4233069070C95623464 @default.
- W4233069070 hasFunder F4320322795 @default.
- W4233069070 hasFunder F4320322814 @default.
- W4233069070 hasIssue "3" @default.
- W4233069070 hasLocation W42330690701 @default.
- W4233069070 hasLocation W42330690702 @default.
- W4233069070 hasOpenAccess W4233069070 @default.
- W4233069070 hasPrimaryLocation W42330690701 @default.
- W4233069070 hasRelatedWork W2891059443 @default.
- W4233069070 hasRelatedWork W2983142544 @default.
- W4233069070 hasRelatedWork W3133533225 @default.
- W4233069070 hasRelatedWork W3163146846 @default.
- W4233069070 hasRelatedWork W3181622257 @default.