Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233104424> ?p ?o ?g. }
- W4233104424 endingPage "20" @default.
- W4233104424 startingPage "5" @default.
- W4233104424 abstract "Kernel methods (KMs) and support vector machines (SVMs) have become very popular as methods for learning from examples. The basic theory is well understood and applications work successfully in practice. Initially illustrated by their use in classification and regression tasks, recent advanced techniques are presented and key applications are described. Issues of numerical optimization, working set selection, improved generalization, model selection, and parameter tuning are addressed. Application research covering the use of SVMs in text categorization, computer vision, and bioinformatics is discussed." @default.
- W4233104424 created "2022-05-12" @default.
- W4233104424 creator A5022114041 @default.
- W4233104424 date "2003-09-01" @default.
- W4233104424 modified "2023-10-11" @default.
- W4233104424 title "Advanced support vector machines and kernel methods" @default.
- W4233104424 cites W1482684349 @default.
- W4233104424 cites W1512068198 @default.
- W4233104424 cites W1761010383 @default.
- W4233104424 cites W1974166884 @default.
- W4233104424 cites W1978996791 @default.
- W4233104424 cites W1983615321 @default.
- W4233104424 cites W1986280275 @default.
- W4233104424 cites W2004785362 @default.
- W4233104424 cites W2009165829 @default.
- W4233104424 cites W2014158063 @default.
- W4233104424 cites W2014991763 @default.
- W4233104424 cites W2025638027 @default.
- W4233104424 cites W2033486907 @default.
- W4233104424 cites W2036350498 @default.
- W4233104424 cites W2041406732 @default.
- W4233104424 cites W2043787972 @default.
- W4233104424 cites W2048102092 @default.
- W4233104424 cites W2054554011 @default.
- W4233104424 cites W2056489048 @default.
- W4233104424 cites W2058847744 @default.
- W4233104424 cites W2071867235 @default.
- W4233104424 cites W2082988498 @default.
- W4233104424 cites W2085145070 @default.
- W4233104424 cites W2094874766 @default.
- W4233104424 cites W2102794349 @default.
- W4233104424 cites W2109911225 @default.
- W4233104424 cites W2114865067 @default.
- W4233104424 cites W2118113396 @default.
- W4233104424 cites W2118836531 @default.
- W4233104424 cites W2124351082 @default.
- W4233104424 cites W2139212933 @default.
- W4233104424 cites W2145722931 @default.
- W4233104424 cites W2146578319 @default.
- W4233104424 cites W2149684865 @default.
- W4233104424 cites W2150926065 @default.
- W4233104424 cites W2155399784 @default.
- W4233104424 cites W2158001550 @default.
- W4233104424 cites W2159686933 @default.
- W4233104424 cites W2160829192 @default.
- W4233104424 cites W2161920802 @default.
- W4233104424 cites W2166282318 @default.
- W4233104424 cites W2169384781 @default.
- W4233104424 cites W2170654002 @default.
- W4233104424 cites W2172000360 @default.
- W4233104424 cites W2217896605 @default.
- W4233104424 cites W2283504545 @default.
- W4233104424 cites W3022552533 @default.
- W4233104424 cites W4239510810 @default.
- W4233104424 doi "https://doi.org/10.1016/s0925-2312(03)00373-4" @default.
- W4233104424 hasPublicationYear "2003" @default.
- W4233104424 type Work @default.
- W4233104424 citedByCount "244" @default.
- W4233104424 countsByYear W42331044242012 @default.
- W4233104424 countsByYear W42331044242013 @default.
- W4233104424 countsByYear W42331044242014 @default.
- W4233104424 countsByYear W42331044242015 @default.
- W4233104424 countsByYear W42331044242016 @default.
- W4233104424 countsByYear W42331044242017 @default.
- W4233104424 countsByYear W42331044242018 @default.
- W4233104424 countsByYear W42331044242019 @default.
- W4233104424 countsByYear W42331044242020 @default.
- W4233104424 countsByYear W42331044242021 @default.
- W4233104424 countsByYear W42331044242022 @default.
- W4233104424 countsByYear W42331044242023 @default.
- W4233104424 crossrefType "journal-article" @default.
- W4233104424 hasAuthorship W4233104424A5022114041 @default.
- W4233104424 hasConcept C114614502 @default.
- W4233104424 hasConcept C119857082 @default.
- W4233104424 hasConcept C122280245 @default.
- W4233104424 hasConcept C12267149 @default.
- W4233104424 hasConcept C124101348 @default.
- W4233104424 hasConcept C134306372 @default.
- W4233104424 hasConcept C14948415 @default.
- W4233104424 hasConcept C154945302 @default.
- W4233104424 hasConcept C160446489 @default.
- W4233104424 hasConcept C177148314 @default.
- W4233104424 hasConcept C177264268 @default.
- W4233104424 hasConcept C199360897 @default.
- W4233104424 hasConcept C26517878 @default.
- W4233104424 hasConcept C33923547 @default.
- W4233104424 hasConcept C38652104 @default.
- W4233104424 hasConcept C41008148 @default.
- W4233104424 hasConcept C74193536 @default.
- W4233104424 hasConcept C81917197 @default.
- W4233104424 hasConcept C94124525 @default.
- W4233104424 hasConceptScore W4233104424C114614502 @default.
- W4233104424 hasConceptScore W4233104424C119857082 @default.
- W4233104424 hasConceptScore W4233104424C122280245 @default.
- W4233104424 hasConceptScore W4233104424C12267149 @default.
- W4233104424 hasConceptScore W4233104424C124101348 @default.
- W4233104424 hasConceptScore W4233104424C134306372 @default.
- W4233104424 hasConceptScore W4233104424C14948415 @default.