Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233180418> ?p ?o ?g. }
- W4233180418 endingPage "177" @default.
- W4233180418 startingPage "155" @default.
- W4233180418 abstract "Seismic hazard estimation relies classically on databased ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French–German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green’s function technique (multi-EGFt) with a k −2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi- EGF is detailed and discussed in our specific situation where less number of events are available. We then showed the impact that each source parameter characterizing the k−2 model has on ground motion amplitude. Finally we performed ground motion simulations showing results for different probable earthquake scenarios in the URG. Dependency of ground motions and of their variability are analyzed at different frequencies in respect of rupture velocity, roughness degree of slip distribution (stress drop), and hypocenter location. In near-source conditions, ground motion variability is shown to be mostly governed by the uncertainty on source parameters. In our specific configuration (magnitude, distance), the directivity effect is only observed in a limited frequency range. Rather, broadband ground motions are shown to be sensitive to both average rupture velocity and its possible variability, and to slip roughness. Ending up with a comparison of simulation results and GMPEs, we conclude that source parameters and their variability should be set up carefully to obtain reliable broadband ground motion estimations. In particular, our study shows that slip roughness should be set up in respect of the target stress drop. This entails the need for a better understanding of the physics of earthquake source and its incorporation in the ground motion modeling." @default.
- W4233180418 created "2022-05-12" @default.
- W4233180418 creator A5000290472 @default.
- W4233180418 creator A5001776706 @default.
- W4233180418 creator A5026121901 @default.
- W4233180418 creator A5072517940 @default.
- W4233180418 creator A5076408147 @default.
- W4233180418 date "2017-12-21" @default.
- W4233180418 modified "2023-09-30" @default.
- W4233180418 title "Near-Fault Broadband Ground Motion Simulations Using Empirical Green’s Functions: Application to the Upper Rhine Graben (France–Germany) Case Study" @default.
- W4233180418 cites W1546669902 @default.
- W4233180418 cites W1792656147 @default.
- W4233180418 cites W1889459887 @default.
- W4233180418 cites W1927664617 @default.
- W4233180418 cites W1965558907 @default.
- W4233180418 cites W1966907135 @default.
- W4233180418 cites W1968217774 @default.
- W4233180418 cites W1968411449 @default.
- W4233180418 cites W1968842194 @default.
- W4233180418 cites W1975011567 @default.
- W4233180418 cites W1984357495 @default.
- W4233180418 cites W1994553199 @default.
- W4233180418 cites W1995029445 @default.
- W4233180418 cites W2004803297 @default.
- W4233180418 cites W2004821916 @default.
- W4233180418 cites W2029022233 @default.
- W4233180418 cites W2036329976 @default.
- W4233180418 cites W2037168657 @default.
- W4233180418 cites W2046343320 @default.
- W4233180418 cites W2063739401 @default.
- W4233180418 cites W2063892691 @default.
- W4233180418 cites W2066368662 @default.
- W4233180418 cites W2068361121 @default.
- W4233180418 cites W2071303370 @default.
- W4233180418 cites W2080902677 @default.
- W4233180418 cites W2086832303 @default.
- W4233180418 cites W2095519592 @default.
- W4233180418 cites W2097061964 @default.
- W4233180418 cites W2098071547 @default.
- W4233180418 cites W2102403687 @default.
- W4233180418 cites W2108149210 @default.
- W4233180418 cites W2134048275 @default.
- W4233180418 cites W2151960936 @default.
- W4233180418 cites W2154267217 @default.
- W4233180418 cites W2155978292 @default.
- W4233180418 cites W2157501616 @default.
- W4233180418 cites W2159265788 @default.
- W4233180418 cites W2163500072 @default.
- W4233180418 cites W2253300489 @default.
- W4233180418 cites W2284988558 @default.
- W4233180418 cites W2344177080 @default.
- W4233180418 cites W2356880650 @default.
- W4233180418 cites W2394619034 @default.
- W4233180418 cites W2491057451 @default.
- W4233180418 cites W4237227090 @default.
- W4233180418 cites W98279028 @default.
- W4233180418 doi "https://doi.org/10.1007/978-3-319-72709-7_10" @default.
- W4233180418 hasPublicationYear "2017" @default.
- W4233180418 type Work @default.
- W4233180418 citedByCount "3" @default.
- W4233180418 countsByYear W42331804182019 @default.
- W4233180418 countsByYear W42331804182021 @default.
- W4233180418 countsByYear W42331804182023 @default.
- W4233180418 crossrefType "book-chapter" @default.
- W4233180418 hasAuthorship W4233180418A5000290472 @default.
- W4233180418 hasAuthorship W4233180418A5001776706 @default.
- W4233180418 hasAuthorship W4233180418A5026121901 @default.
- W4233180418 hasAuthorship W4233180418A5072517940 @default.
- W4233180418 hasAuthorship W4233180418A5076408147 @default.
- W4233180418 hasBestOaLocation W42331804184 @default.
- W4233180418 hasConcept C111357193 @default.
- W4233180418 hasConcept C121332964 @default.
- W4233180418 hasConcept C127313418 @default.
- W4233180418 hasConcept C127413603 @default.
- W4233180418 hasConcept C134512083 @default.
- W4233180418 hasConcept C165205528 @default.
- W4233180418 hasConcept C166839181 @default.
- W4233180418 hasConcept C175551986 @default.
- W4233180418 hasConcept C2988284105 @default.
- W4233180418 hasConcept C39920418 @default.
- W4233180418 hasConcept C509933004 @default.
- W4233180418 hasConcept C69361100 @default.
- W4233180418 hasConcept C74650414 @default.
- W4233180418 hasConcept C76155785 @default.
- W4233180418 hasConcept C77928131 @default.
- W4233180418 hasConcept C83176761 @default.
- W4233180418 hasConcept C89929633 @default.
- W4233180418 hasConceptScore W4233180418C111357193 @default.
- W4233180418 hasConceptScore W4233180418C121332964 @default.
- W4233180418 hasConceptScore W4233180418C127313418 @default.
- W4233180418 hasConceptScore W4233180418C127413603 @default.
- W4233180418 hasConceptScore W4233180418C134512083 @default.
- W4233180418 hasConceptScore W4233180418C165205528 @default.
- W4233180418 hasConceptScore W4233180418C166839181 @default.
- W4233180418 hasConceptScore W4233180418C175551986 @default.
- W4233180418 hasConceptScore W4233180418C2988284105 @default.
- W4233180418 hasConceptScore W4233180418C39920418 @default.
- W4233180418 hasConceptScore W4233180418C509933004 @default.