Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233251349> ?p ?o ?g. }
- W4233251349 endingPage "1595" @default.
- W4233251349 startingPage "1587" @default.
- W4233251349 abstract "Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale. Furthermore, this model predicts the phenomena of the thermal stability of metal particles on graphene, the superheating of embedded nanoparticles, the order-disorder transition of nanoalloys, the size-temperature phase diagram for low-dimensional solids and the alloying ability on the nanoscale. Extensions of this model may lead to the design of new functional nanomaterials." @default.
- W4233251349 created "2022-05-12" @default.
- W4233251349 creator A5003839157 @default.
- W4233251349 date "2016-06-29" @default.
- W4233251349 modified "2023-09-29" @default.
- W4233251349 title "Nanoscopic Thermodynamics" @default.
- W4233251349 cites W148336604 @default.
- W4233251349 cites W1603539902 @default.
- W4233251349 cites W1965004209 @default.
- W4233251349 cites W1968959387 @default.
- W4233251349 cites W1972758328 @default.
- W4233251349 cites W1976081321 @default.
- W4233251349 cites W1978066323 @default.
- W4233251349 cites W1980429567 @default.
- W4233251349 cites W1981281547 @default.
- W4233251349 cites W1982161876 @default.
- W4233251349 cites W1987401833 @default.
- W4233251349 cites W1990771518 @default.
- W4233251349 cites W1991954074 @default.
- W4233251349 cites W1992663716 @default.
- W4233251349 cites W1997728560 @default.
- W4233251349 cites W1999165414 @default.
- W4233251349 cites W2004352897 @default.
- W4233251349 cites W2005355171 @default.
- W4233251349 cites W2005922461 @default.
- W4233251349 cites W2008404804 @default.
- W4233251349 cites W2008642222 @default.
- W4233251349 cites W2012230640 @default.
- W4233251349 cites W2016727426 @default.
- W4233251349 cites W2023451346 @default.
- W4233251349 cites W2024829514 @default.
- W4233251349 cites W2026988115 @default.
- W4233251349 cites W2034158587 @default.
- W4233251349 cites W2036691289 @default.
- W4233251349 cites W2039850802 @default.
- W4233251349 cites W2040477567 @default.
- W4233251349 cites W2043729316 @default.
- W4233251349 cites W2047086757 @default.
- W4233251349 cites W2049792122 @default.
- W4233251349 cites W2050038570 @default.
- W4233251349 cites W2054275566 @default.
- W4233251349 cites W2054335718 @default.
- W4233251349 cites W2054717541 @default.
- W4233251349 cites W2056630357 @default.
- W4233251349 cites W2057614937 @default.
- W4233251349 cites W2058518619 @default.
- W4233251349 cites W2066392908 @default.
- W4233251349 cites W2072373103 @default.
- W4233251349 cites W2074893424 @default.
- W4233251349 cites W2074993800 @default.
- W4233251349 cites W2077645555 @default.
- W4233251349 cites W2080701277 @default.
- W4233251349 cites W2083431021 @default.
- W4233251349 cites W2098826807 @default.
- W4233251349 cites W2102572148 @default.
- W4233251349 cites W2110499070 @default.
- W4233251349 cites W2120401153 @default.
- W4233251349 cites W2121311586 @default.
- W4233251349 cites W2122085202 @default.
- W4233251349 cites W2126658980 @default.
- W4233251349 cites W2131829501 @default.
- W4233251349 cites W2139683943 @default.
- W4233251349 cites W2142574808 @default.
- W4233251349 cites W2145348770 @default.
- W4233251349 cites W2145445828 @default.
- W4233251349 cites W2148397472 @default.
- W4233251349 cites W2151272690 @default.
- W4233251349 cites W2154826717 @default.
- W4233251349 cites W2158189069 @default.
- W4233251349 cites W2163370881 @default.
- W4233251349 cites W2324772952 @default.
- W4233251349 cites W2326881662 @default.
- W4233251349 cites W2327121741 @default.
- W4233251349 cites W2343226991 @default.
- W4233251349 cites W2950408133 @default.
- W4233251349 doi "https://doi.org/10.1021/acs.accounts.6b00205" @default.
- W4233251349 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27355129" @default.
- W4233251349 hasPublicationYear "2016" @default.
- W4233251349 type Work @default.
- W4233251349 citedByCount "110" @default.
- W4233251349 countsByYear W42332513492016 @default.
- W4233251349 countsByYear W42332513492017 @default.
- W4233251349 countsByYear W42332513492018 @default.
- W4233251349 countsByYear W42332513492019 @default.
- W4233251349 countsByYear W42332513492020 @default.
- W4233251349 countsByYear W42332513492021 @default.
- W4233251349 countsByYear W42332513492022 @default.
- W4233251349 countsByYear W42332513492023 @default.
- W4233251349 crossrefType "journal-article" @default.
- W4233251349 hasAuthorship W4233251349A5003839157 @default.
- W4233251349 hasConcept C121332964 @default.
- W4233251349 hasConcept C155672457 @default.
- W4233251349 hasConcept C159467904 @default.
- W4233251349 hasConcept C171250308 @default.
- W4233251349 hasConcept C177731217 @default.
- W4233251349 hasConcept C185592680 @default.
- W4233251349 hasConcept C192562407 @default.
- W4233251349 hasConcept C25376523 @default.