Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233441039> ?p ?o ?g. }
- W4233441039 abstract "<sec> <title>BACKGROUND</title> Social media serve as an alternate information source for patients, who use them to share information and provide social support. Though large amounts of health-related data are being posted on Twitter and other social networking platforms each day, research using social media data for understanding chronic conditions and patients' lifestyles is still lacking. </sec> <sec> <title>OBJECTIVE</title> In this research we contribute to closing this gap by providing a framework for identifying patients with Inflammatory Bowel Disease (IBD) on Twitter and learning from their personal experience. We enable the analysis of patients' tweets by building a classifier of Twitter users that distinguishes patients from other entities. The research aims to assess the feasibility of using social media data to promote chronically ill patients' wellbeing, by relying on the wisdom of the crowd for identifying healthy lifestyles. We seek to leverage posts describing patients' daily activities and the influence on their wellbeing for characterizing different treatments and understanding what works for whom. </sec> <sec> <title>METHODS</title> In the first stage of the research, a machine learning method combining both social network analysis and natural language processing was used to classify users as patients or not automatically. Three types of features were considered: (1) the user's behavior on Twitter, (2) the content of the user's tweets, and (3) the social structure of the user's network. Different classification algorithms were examined and compared using two measures (F1-score and precision) over 10-fold cross-validation. In the second stage of the research, the obtained classification methods were used to collect tweets of patients, in which they refer to the different lifestyle changes they endure in order to deal with their disease. Using IBM Watson Service for entity sentiment analysis, we calculated the average sentiment of 420 lifestyle-related words that IBD patients use when describing their daily routine. </sec> <sec> <title>RESULTS</title> The best classification results (F1-score 0.808 and precision 0.809) for identifying IBD patients among Twitter users were achieved by a multiple-instance learning approach, which constitutes the novelty of this research. The sentiment analysis of tweets written by IBD patients identified frequently mentioned lifestyles and their influence on patients' wellbeing. The findings reinforced what is known about suitable nutrition for IBD, and several foods that are known to cause inflammation were highlighted as words with negative sentiment. </sec> <sec> <title>CONCLUSIONS</title> Patients everywhere use social media to share health and treatment information, learn from each other's experiences, and provide social support. Mining these informative conversations may shed some light on patients' ways of life and support chronic conditions research. </sec>" @default.
- W4233441039 created "2022-05-12" @default.
- W4233441039 creator A5063533790 @default.
- W4233441039 creator A5067005832 @default.
- W4233441039 creator A5078183188 @default.
- W4233441039 date "2021-03-29" @default.
- W4233441039 modified "2023-09-26" @default.
- W4233441039 title "Identifying Patients on Twitter and Learning from Their Personal Experience: The Case of IBD (Preprint)" @default.
- W4233441039 cites W1160293654 @default.
- W4233441039 cites W1513263408 @default.
- W4233441039 cites W1544144649 @default.
- W4233441039 cites W1544578897 @default.
- W4233441039 cites W1968616184 @default.
- W4233441039 cites W1978394996 @default.
- W4233441039 cites W1978712750 @default.
- W4233441039 cites W2006185078 @default.
- W4233441039 cites W2008020355 @default.
- W4233441039 cites W2010744484 @default.
- W4233441039 cites W2011273513 @default.
- W4233441039 cites W2013416264 @default.
- W4233441039 cites W2013912476 @default.
- W4233441039 cites W2015186536 @default.
- W4233441039 cites W2015602667 @default.
- W4233441039 cites W2017729405 @default.
- W4233441039 cites W2030003287 @default.
- W4233441039 cites W2041287014 @default.
- W4233441039 cites W2041792666 @default.
- W4233441039 cites W2042886026 @default.
- W4233441039 cites W2054860584 @default.
- W4233441039 cites W2059467786 @default.
- W4233441039 cites W2090224700 @default.
- W4233441039 cites W2093548314 @default.
- W4233441039 cites W2094464340 @default.
- W4233441039 cites W2110119381 @default.
- W4233441039 cites W2117130368 @default.
- W4233441039 cites W2123306546 @default.
- W4233441039 cites W2129211744 @default.
- W4233441039 cites W2139450736 @default.
- W4233441039 cites W2146234850 @default.
- W4233441039 cites W2152311353 @default.
- W4233441039 cites W2182578492 @default.
- W4233441039 cites W2316852149 @default.
- W4233441039 cites W233917229 @default.
- W4233441039 cites W2496150059 @default.
- W4233441039 cites W2567766614 @default.
- W4233441039 cites W2607331267 @default.
- W4233441039 cites W2745005270 @default.
- W4233441039 cites W2793785670 @default.
- W4233441039 cites W2941359220 @default.
- W4233441039 cites W2962754829 @default.
- W4233441039 cites W40563694 @default.
- W4233441039 cites W4211099384 @default.
- W4233441039 cites W59343757 @default.
- W4233441039 cites W1597058545 @default.
- W4233441039 doi "https://doi.org/10.2196/preprints.29186" @default.
- W4233441039 hasPublicationYear "2021" @default.
- W4233441039 type Work @default.
- W4233441039 citedByCount "1" @default.
- W4233441039 countsByYear W42334410392021 @default.
- W4233441039 crossrefType "posted-content" @default.
- W4233441039 hasAuthorship W4233441039A5063533790 @default.
- W4233441039 hasAuthorship W4233441039A5067005832 @default.
- W4233441039 hasAuthorship W4233441039A5078183188 @default.
- W4233441039 hasConcept C108827166 @default.
- W4233441039 hasConcept C136764020 @default.
- W4233441039 hasConcept C153083717 @default.
- W4233441039 hasConcept C154945302 @default.
- W4233441039 hasConcept C15744967 @default.
- W4233441039 hasConcept C2522767166 @default.
- W4233441039 hasConcept C41008148 @default.
- W4233441039 hasConcept C43169469 @default.
- W4233441039 hasConcept C4727928 @default.
- W4233441039 hasConcept C518677369 @default.
- W4233441039 hasConcept C95623464 @default.
- W4233441039 hasConceptScore W4233441039C108827166 @default.
- W4233441039 hasConceptScore W4233441039C136764020 @default.
- W4233441039 hasConceptScore W4233441039C153083717 @default.
- W4233441039 hasConceptScore W4233441039C154945302 @default.
- W4233441039 hasConceptScore W4233441039C15744967 @default.
- W4233441039 hasConceptScore W4233441039C2522767166 @default.
- W4233441039 hasConceptScore W4233441039C41008148 @default.
- W4233441039 hasConceptScore W4233441039C43169469 @default.
- W4233441039 hasConceptScore W4233441039C4727928 @default.
- W4233441039 hasConceptScore W4233441039C518677369 @default.
- W4233441039 hasConceptScore W4233441039C95623464 @default.
- W4233441039 hasLocation W42334410391 @default.
- W4233441039 hasOpenAccess W4233441039 @default.
- W4233441039 hasPrimaryLocation W42334410391 @default.
- W4233441039 hasRelatedWork W1977921572 @default.
- W4233441039 hasRelatedWork W2046804949 @default.
- W4233441039 hasRelatedWork W2065099951 @default.
- W4233441039 hasRelatedWork W2245953653 @default.
- W4233441039 hasRelatedWork W2748952813 @default.
- W4233441039 hasRelatedWork W3026336487 @default.
- W4233441039 hasRelatedWork W3155564043 @default.
- W4233441039 hasRelatedWork W3164688832 @default.
- W4233441039 hasRelatedWork W2593441348 @default.
- W4233441039 hasRelatedWork W2993423439 @default.
- W4233441039 isParatext "false" @default.
- W4233441039 isRetracted "false" @default.