Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233471559> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4233471559 endingPage "SI9" @default.
- W4233471559 startingPage "SI1" @default.
- W4233471559 abstract "Recommender systems (RS) have become a fundamental tool for helping users make decisions around millions of different choices nowadays – the era of Big Data. It brings a huge benefit for many business models around the world due to their effectiveness on the target customers. A lot of recommendation models and techniques have been proposed and many accomplished incredible outcomes. Collaborative filtering and content-based filtering methods are common, but these both have some disadvantages. A critical one is that they only focus on a user's long-term static preference while ignoring his or her short-term transactional patterns, which results in missing the user's preference shift through the time. In this case, the user's intent at a certain time point may be easily submerged by his or her historical decision behaviors, which leads to unreliable recommendations. To deal with this issue, a session of user interactions with the items can be considered as a solution. In this study, Long Short-Term Memory (LSTM) networks will be analyzed to be applied to user sessions in a recommender system. The MovieLens dataset is considered as a case study of movie recommender systems. This dataset is preprocessed to extract user-movie sessions for user behavior discovery and making movie recommendations to users. Several experiments have been carried out to evaluate the LSTM-based movie recommender system. In the experiments, the LSTM networks are compared with a similar deep learning method, which is Recurrent Neural Networks (RNN), and a baseline machine learning method, which is the collaborative filtering using item-based nearest neighbors (item-KNN). It has been found that the LSTM networks are able to be improved by optimizing their hyperparameters and outperform the other methods when predicting the next movies interested by users." @default.
- W4233471559 created "2022-05-12" @default.
- W4233471559 creator A5032480091 @default.
- W4233471559 creator A5083306544 @default.
- W4233471559 date "2020-09-19" @default.
- W4233471559 modified "2023-09-28" @default.
- W4233471559 title "Long Short-Term Memory Based Movie Recommendation" @default.
- W4233471559 doi "https://doi.org/10.32508/stdjet.v3isi1.540" @default.
- W4233471559 hasPublicationYear "2020" @default.
- W4233471559 type Work @default.
- W4233471559 citedByCount "2" @default.
- W4233471559 countsByYear W42334715592021 @default.
- W4233471559 countsByYear W42334715592022 @default.
- W4233471559 crossrefType "journal-article" @default.
- W4233471559 hasAuthorship W4233471559A5032480091 @default.
- W4233471559 hasAuthorship W4233471559A5083306544 @default.
- W4233471559 hasBestOaLocation W42334715591 @default.
- W4233471559 hasConcept C108583219 @default.
- W4233471559 hasConcept C111368507 @default.
- W4233471559 hasConcept C119857082 @default.
- W4233471559 hasConcept C121332964 @default.
- W4233471559 hasConcept C12725497 @default.
- W4233471559 hasConcept C127313418 @default.
- W4233471559 hasConcept C136764020 @default.
- W4233471559 hasConcept C147168706 @default.
- W4233471559 hasConcept C154945302 @default.
- W4233471559 hasConcept C162324750 @default.
- W4233471559 hasConcept C175444787 @default.
- W4233471559 hasConcept C21569690 @default.
- W4233471559 hasConcept C23123220 @default.
- W4233471559 hasConcept C2776156558 @default.
- W4233471559 hasConcept C2779182362 @default.
- W4233471559 hasConcept C2781249084 @default.
- W4233471559 hasConcept C41008148 @default.
- W4233471559 hasConcept C50644808 @default.
- W4233471559 hasConcept C557471498 @default.
- W4233471559 hasConcept C61797465 @default.
- W4233471559 hasConcept C62520636 @default.
- W4233471559 hasConceptScore W4233471559C108583219 @default.
- W4233471559 hasConceptScore W4233471559C111368507 @default.
- W4233471559 hasConceptScore W4233471559C119857082 @default.
- W4233471559 hasConceptScore W4233471559C121332964 @default.
- W4233471559 hasConceptScore W4233471559C12725497 @default.
- W4233471559 hasConceptScore W4233471559C127313418 @default.
- W4233471559 hasConceptScore W4233471559C136764020 @default.
- W4233471559 hasConceptScore W4233471559C147168706 @default.
- W4233471559 hasConceptScore W4233471559C154945302 @default.
- W4233471559 hasConceptScore W4233471559C162324750 @default.
- W4233471559 hasConceptScore W4233471559C175444787 @default.
- W4233471559 hasConceptScore W4233471559C21569690 @default.
- W4233471559 hasConceptScore W4233471559C23123220 @default.
- W4233471559 hasConceptScore W4233471559C2776156558 @default.
- W4233471559 hasConceptScore W4233471559C2779182362 @default.
- W4233471559 hasConceptScore W4233471559C2781249084 @default.
- W4233471559 hasConceptScore W4233471559C41008148 @default.
- W4233471559 hasConceptScore W4233471559C50644808 @default.
- W4233471559 hasConceptScore W4233471559C557471498 @default.
- W4233471559 hasConceptScore W4233471559C61797465 @default.
- W4233471559 hasConceptScore W4233471559C62520636 @default.
- W4233471559 hasFunder F4320309617 @default.
- W4233471559 hasIssue "SI1" @default.
- W4233471559 hasLocation W42334715591 @default.
- W4233471559 hasOpenAccess W4233471559 @default.
- W4233471559 hasPrimaryLocation W42334715591 @default.
- W4233471559 hasRelatedWork W1479993970 @default.
- W4233471559 hasRelatedWork W2075040002 @default.
- W4233471559 hasRelatedWork W2161485269 @default.
- W4233471559 hasRelatedWork W2311446356 @default.
- W4233471559 hasRelatedWork W2402445420 @default.
- W4233471559 hasRelatedWork W2967481075 @default.
- W4233471559 hasRelatedWork W2969416341 @default.
- W4233471559 hasRelatedWork W4283711282 @default.
- W4233471559 hasRelatedWork W4291554163 @default.
- W4233471559 hasRelatedWork W4319962190 @default.
- W4233471559 hasVolume "3" @default.
- W4233471559 isParatext "false" @default.
- W4233471559 isRetracted "false" @default.
- W4233471559 workType "article" @default.