Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233765572> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4233765572 abstract "The field of optimization has been and continues to be an area of significant importance in the industry. From financial, industrial, social and any other sector conceivable, people are interested in improving the scheme of existing methodologies and products and/or in creating new ideas. Due to the growing need for humans to improve their lives and add efficiency to a system, optimization has been and still is an area of active research. Typically optimization methods seek to improve rather than create new ideas. However, the ability of optimization methods to mold new ideas should not be ruled out, since optimized solutions usually lead to new designs, which are in most cases unique. Combinatorial optimization is the term used to define the method of finding the best sequence or combination of variables or elements in a large complex system in order to attain a particular objective. This thesis promises to provide a panoramic view of optimization in general before zooming into a specific artificial intelligence technique in optimization. Detailed information on optimization techniques commonly used in mechanical engineering is first provided to ensure a clear understanding of the thesis. Moreover, the thesis highlights the differences and similarities, advantages and disadvantages of these techniques. After a brief study of the techniques entailed in optimization, an artificial intelligence algorithm, namely genetic algorithm, was selected, developed, improved and later applied to a wide variety of mechanical engineering problems. Ample examples from various fields of engineering are provided to illustrate the versatility of genetic algorithms. The major focus of this thesis is therefore the application of genetic algorithms to solve a broad range of engineering problems. The viability of the genetic algorithm (GA) as an optimization tool for mechanical engineering applications is assessed and discussed. Comparison between GA generated results and results found in the literature are presented when possible to underscore the power of GA to solve problems. Moreover, the disadvantages and advantages of the genetic algorithms are discussed based on the results obtained. The mechanical engineering applications studied include conceptual aircraft design, design of truss structures under various constraints and loading conditions, and armour design using established penetration analytical models. Results show that the genetic algorithm developed is capable of handling a wide range of problems, is an efficient cost effective tool, and often provides superior results when compared to other optimization methods found in the literature." @default.
- W4233765572 created "2022-05-12" @default.
- W4233765572 creator A5017135042 @default.
- W4233765572 date "2021-05-23" @default.
- W4233765572 modified "2023-09-26" @default.
- W4233765572 title "Optimization of engineering systems using genetic algorithm enhanced computational techniques" @default.
- W4233765572 doi "https://doi.org/10.32920/ryerson.14655216" @default.
- W4233765572 hasPublicationYear "2021" @default.
- W4233765572 type Work @default.
- W4233765572 citedByCount "0" @default.
- W4233765572 crossrefType "posted-content" @default.
- W4233765572 hasAuthorship W4233765572A5017135042 @default.
- W4233765572 hasBestOaLocation W42337655721 @default.
- W4233765572 hasConcept C110850998 @default.
- W4233765572 hasConcept C11413529 @default.
- W4233765572 hasConcept C119857082 @default.
- W4233765572 hasConcept C124913957 @default.
- W4233765572 hasConcept C126255220 @default.
- W4233765572 hasConcept C127413603 @default.
- W4233765572 hasConcept C136197465 @default.
- W4233765572 hasConcept C13736549 @default.
- W4233765572 hasConcept C137836250 @default.
- W4233765572 hasConcept C15336307 @default.
- W4233765572 hasConcept C154945302 @default.
- W4233765572 hasConcept C202444582 @default.
- W4233765572 hasConcept C33923547 @default.
- W4233765572 hasConcept C41008148 @default.
- W4233765572 hasConcept C68781425 @default.
- W4233765572 hasConcept C78762247 @default.
- W4233765572 hasConcept C8880873 @default.
- W4233765572 hasConcept C9652623 @default.
- W4233765572 hasConceptScore W4233765572C110850998 @default.
- W4233765572 hasConceptScore W4233765572C11413529 @default.
- W4233765572 hasConceptScore W4233765572C119857082 @default.
- W4233765572 hasConceptScore W4233765572C124913957 @default.
- W4233765572 hasConceptScore W4233765572C126255220 @default.
- W4233765572 hasConceptScore W4233765572C127413603 @default.
- W4233765572 hasConceptScore W4233765572C136197465 @default.
- W4233765572 hasConceptScore W4233765572C13736549 @default.
- W4233765572 hasConceptScore W4233765572C137836250 @default.
- W4233765572 hasConceptScore W4233765572C15336307 @default.
- W4233765572 hasConceptScore W4233765572C154945302 @default.
- W4233765572 hasConceptScore W4233765572C202444582 @default.
- W4233765572 hasConceptScore W4233765572C33923547 @default.
- W4233765572 hasConceptScore W4233765572C41008148 @default.
- W4233765572 hasConceptScore W4233765572C68781425 @default.
- W4233765572 hasConceptScore W4233765572C78762247 @default.
- W4233765572 hasConceptScore W4233765572C8880873 @default.
- W4233765572 hasConceptScore W4233765572C9652623 @default.
- W4233765572 hasLocation W42337655721 @default.
- W4233765572 hasLocation W42337655722 @default.
- W4233765572 hasOpenAccess W4233765572 @default.
- W4233765572 hasPrimaryLocation W42337655721 @default.
- W4233765572 hasRelatedWork W1997393034 @default.
- W4233765572 hasRelatedWork W2021734059 @default.
- W4233765572 hasRelatedWork W2055791821 @default.
- W4233765572 hasRelatedWork W2156023754 @default.
- W4233765572 hasRelatedWork W2159265321 @default.
- W4233765572 hasRelatedWork W2166364496 @default.
- W4233765572 hasRelatedWork W2611723089 @default.
- W4233765572 hasRelatedWork W2951396390 @default.
- W4233765572 hasRelatedWork W3050579520 @default.
- W4233765572 hasRelatedWork W4233765572 @default.
- W4233765572 isParatext "false" @default.
- W4233765572 isRetracted "false" @default.
- W4233765572 workType "article" @default.