Matches in SemOpenAlex for { <https://semopenalex.org/work/W4233982241> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4233982241 endingPage "223" @default.
- W4233982241 startingPage "168" @default.
- W4233982241 abstract "Extracting useful information from structured and unstructured biological data is crucial in the health industry. Some examples include medical practitioner’s need to identify breast cancer patient in the early stage, estimate survival time of a heart disease patient, or recognize uncommon disease characteristics which suddenly appear. Currently there is an explosion in biological data available in the data bases. But information extraction and true open access to data are require time to resolve issues such as ethical clearance. The emergence of novel IT technologies allows health practitioners to facilitate the comprehensive analyses of medical images, genomes, transcriptomes, and proteomes in health and disease. The information that is extracted from such technologies may soon exert a dramatic change in the pace of medical research and impact considerably on the care of patients. The current research will review the existing technologies being used in heart and cancer research. Finally this research will provide some possible solutions to overcome the limitations of existing technologies. In summary the primary objective of this research is to investigate how existing modern machine learning techniques (with their strength and limitations) are being used in the indent of heartbeat related disease and the early detection of cancer in patients. After an extensive literature review these are the objectives chosen: to develop a new approach to find the association between diseases such as high blood pressure, stroke and heartbeat, to propose an improved feature selection method to analyze huge images and microarray databases for machine learning algorithms in cancer research, to find an automatic distance function selection method for clustering tasks, to discover the most significant risk factors for specific cancers, and to determine the preventive factors for specific cancers that are aligned with the most significant risk factors. Therefore we propose a research plan to attain these objectives within this chapter. The possible solutions of the above objectives are: new heartbeat identification techniques show promising association with the heartbeat patterns and diseases, sensitivity based feature selection methods will be applied to early cancer patient classification, meta learning approaches will be adopted in clustering algorithms to select an automatic distance function, and Apriori algorithm will be applied to discover the significant risks and preventive factors for specific cancers. We expect this research will add significant contributions to the medical professional to enable more accurate diagnosis and better patient care. It will also contribute in other area such as biomedical modeling, medical image analysis and early diseases warning." @default.
- W4233982241 created "2022-05-12" @default.
- W4233982241 creator A5031467947 @default.
- W4233982241 creator A5063054326 @default.
- W4233982241 creator A5011264390 @default.
- W4233982241 date "2010-01-01" @default.
- W4233982241 modified "2023-10-14" @default.
- W4233982241 title "Pattern Discovery from Biological Data" @default.
- W4233982241 doi "https://doi.org/10.4018/978-1-60566-908-3.ch009" @default.
- W4233982241 hasPublicationYear "2010" @default.
- W4233982241 type Work @default.
- W4233982241 citedByCount "0" @default.
- W4233982241 crossrefType "book-chapter" @default.
- W4233982241 hasAuthorship W4233982241A5011264390 @default.
- W4233982241 hasAuthorship W4233982241A5031467947 @default.
- W4233982241 hasAuthorship W4233982241A5063054326 @default.
- W4233982241 hasConcept C106977388 @default.
- W4233982241 hasConcept C116567970 @default.
- W4233982241 hasConcept C119857082 @default.
- W4233982241 hasConcept C124101348 @default.
- W4233982241 hasConcept C13280743 @default.
- W4233982241 hasConcept C13852961 @default.
- W4233982241 hasConcept C142724271 @default.
- W4233982241 hasConcept C154945302 @default.
- W4233982241 hasConcept C205649164 @default.
- W4233982241 hasConcept C2522767166 @default.
- W4233982241 hasConcept C2777526511 @default.
- W4233982241 hasConcept C2779134260 @default.
- W4233982241 hasConcept C38652104 @default.
- W4233982241 hasConcept C41008148 @default.
- W4233982241 hasConcept C60644358 @default.
- W4233982241 hasConcept C71924100 @default.
- W4233982241 hasConcept C75684735 @default.
- W4233982241 hasConcept C86803240 @default.
- W4233982241 hasConceptScore W4233982241C106977388 @default.
- W4233982241 hasConceptScore W4233982241C116567970 @default.
- W4233982241 hasConceptScore W4233982241C119857082 @default.
- W4233982241 hasConceptScore W4233982241C124101348 @default.
- W4233982241 hasConceptScore W4233982241C13280743 @default.
- W4233982241 hasConceptScore W4233982241C13852961 @default.
- W4233982241 hasConceptScore W4233982241C142724271 @default.
- W4233982241 hasConceptScore W4233982241C154945302 @default.
- W4233982241 hasConceptScore W4233982241C205649164 @default.
- W4233982241 hasConceptScore W4233982241C2522767166 @default.
- W4233982241 hasConceptScore W4233982241C2777526511 @default.
- W4233982241 hasConceptScore W4233982241C2779134260 @default.
- W4233982241 hasConceptScore W4233982241C38652104 @default.
- W4233982241 hasConceptScore W4233982241C41008148 @default.
- W4233982241 hasConceptScore W4233982241C60644358 @default.
- W4233982241 hasConceptScore W4233982241C71924100 @default.
- W4233982241 hasConceptScore W4233982241C75684735 @default.
- W4233982241 hasConceptScore W4233982241C86803240 @default.
- W4233982241 hasLocation W42339822411 @default.
- W4233982241 hasOpenAccess W4233982241 @default.
- W4233982241 hasPrimaryLocation W42339822411 @default.
- W4233982241 hasRelatedWork W10528603 @default.
- W4233982241 hasRelatedWork W10931660 @default.
- W4233982241 hasRelatedWork W11731714 @default.
- W4233982241 hasRelatedWork W12970924 @default.
- W4233982241 hasRelatedWork W13936347 @default.
- W4233982241 hasRelatedWork W2049211 @default.
- W4233982241 hasRelatedWork W3563469 @default.
- W4233982241 hasRelatedWork W4630997 @default.
- W4233982241 hasRelatedWork W5706645 @default.
- W4233982241 hasRelatedWork W8589957 @default.
- W4233982241 isParatext "false" @default.
- W4233982241 isRetracted "false" @default.
- W4233982241 workType "book-chapter" @default.