Matches in SemOpenAlex for { <https://semopenalex.org/work/W4234502368> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4234502368 abstract "Most of the current collision warning systems are mainly designed to detect imminent rear-end, lane-changing or lane departure collisions. None of them was designed to detect imminent intersection collisions, which were found to cause more fatalities and injuries than other types of collisions. One of the most important factors that lead to intersection collisions is driver’s human error and misjudgement. A main source for human errors is the insensitivity of human vision system to detect the speed and acceleration of approaching vehicles; and therefore, any algorithm for an intersection collision warning system should give consideration to the speed and acceleration of all approaching vehicles to mitigate the inadequacy in the human vision system. Moreover, when designing any collision warning system, false warnings should be minimized to avoid nuisance for drivers that might lead to the loss of the system’s reliability by potential users. This research proposed an intersection collision warning system that utilizes commercially-available detection sensors to detect approaching vehicles and measure their speeds and acceleration rates in order to estimate the time-to-collision and compare it to the time required for the turning vehicle to clear the paths of the approaching vehicles. By comparing these times, the system triggers a warning message if an imminent collision is detected. Minimum specifications for key hardware components are established for the proposed system which does not depend on specific technology. To estimate the time require to clear the paths of the approaching vehicles, statistical models were developed to estimate the perception-reaction time for the driver of the turning vehicle and the rate of acceleration selected when departing the intersection. The statistical models include regression models that were calibrated from data collected through driving simulation and more-sophisticated artificial neural network models that are based on actual data collected from a specific driver on a specific vehicle. The proposed system was validated by computer simulation to verify the accuracy of the developed algorithms and to measure the impact of different components on the functionality and reliability of the system. Final conclusions are provided along with recommendations for further research." @default.
- W4234502368 created "2022-05-12" @default.
- W4234502368 creator A5036081050 @default.
- W4234502368 date "2021-06-08" @default.
- W4234502368 modified "2023-09-29" @default.
- W4234502368 title "Development Of In-Vehicle Collision Warning System For Intersections" @default.
- W4234502368 doi "https://doi.org/10.32920/ryerson.14660670" @default.
- W4234502368 hasPublicationYear "2021" @default.
- W4234502368 type Work @default.
- W4234502368 citedByCount "0" @default.
- W4234502368 crossrefType "posted-content" @default.
- W4234502368 hasAuthorship W4234502368A5036081050 @default.
- W4234502368 hasBestOaLocation W42345023681 @default.
- W4234502368 hasConcept C117896860 @default.
- W4234502368 hasConcept C121332964 @default.
- W4234502368 hasConcept C121704057 @default.
- W4234502368 hasConcept C127413603 @default.
- W4234502368 hasConcept C151043444 @default.
- W4234502368 hasConcept C154945302 @default.
- W4234502368 hasConcept C163258240 @default.
- W4234502368 hasConcept C22212356 @default.
- W4234502368 hasConcept C29825287 @default.
- W4234502368 hasConcept C38652104 @default.
- W4234502368 hasConcept C41008148 @default.
- W4234502368 hasConcept C43214815 @default.
- W4234502368 hasConcept C44154836 @default.
- W4234502368 hasConcept C62520636 @default.
- W4234502368 hasConcept C64543145 @default.
- W4234502368 hasConcept C74650414 @default.
- W4234502368 hasConcept C76155785 @default.
- W4234502368 hasConcept C79403827 @default.
- W4234502368 hasConceptScore W4234502368C117896860 @default.
- W4234502368 hasConceptScore W4234502368C121332964 @default.
- W4234502368 hasConceptScore W4234502368C121704057 @default.
- W4234502368 hasConceptScore W4234502368C127413603 @default.
- W4234502368 hasConceptScore W4234502368C151043444 @default.
- W4234502368 hasConceptScore W4234502368C154945302 @default.
- W4234502368 hasConceptScore W4234502368C163258240 @default.
- W4234502368 hasConceptScore W4234502368C22212356 @default.
- W4234502368 hasConceptScore W4234502368C29825287 @default.
- W4234502368 hasConceptScore W4234502368C38652104 @default.
- W4234502368 hasConceptScore W4234502368C41008148 @default.
- W4234502368 hasConceptScore W4234502368C43214815 @default.
- W4234502368 hasConceptScore W4234502368C44154836 @default.
- W4234502368 hasConceptScore W4234502368C62520636 @default.
- W4234502368 hasConceptScore W4234502368C64543145 @default.
- W4234502368 hasConceptScore W4234502368C74650414 @default.
- W4234502368 hasConceptScore W4234502368C76155785 @default.
- W4234502368 hasConceptScore W4234502368C79403827 @default.
- W4234502368 hasLocation W42345023681 @default.
- W4234502368 hasLocation W42345023682 @default.
- W4234502368 hasOpenAccess W4234502368 @default.
- W4234502368 hasPrimaryLocation W42345023681 @default.
- W4234502368 hasRelatedWork W1535544810 @default.
- W4234502368 hasRelatedWork W1546873513 @default.
- W4234502368 hasRelatedWork W1647522455 @default.
- W4234502368 hasRelatedWork W2085725913 @default.
- W4234502368 hasRelatedWork W2138355150 @default.
- W4234502368 hasRelatedWork W2510286622 @default.
- W4234502368 hasRelatedWork W2789703022 @default.
- W4234502368 hasRelatedWork W3013662625 @default.
- W4234502368 hasRelatedWork W4234502368 @default.
- W4234502368 hasRelatedWork W632532863 @default.
- W4234502368 isParatext "false" @default.
- W4234502368 isRetracted "false" @default.
- W4234502368 workType "article" @default.