Matches in SemOpenAlex for { <https://semopenalex.org/work/W4234582303> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4234582303 abstract "<sec> <title>BACKGROUND</title> For many years, clinicians have been seeking for objective pain assessment solutions via neuroimaging techniques, focusing on the brain to detect human pain. Unfortunately, most of those techniques are not applicable in the clinical environment or lack accuracy. </sec> <sec> <title>OBJECTIVE</title> This study aimed to test the feasibility of a mobile neuroimaging-based clinical augmented reality (AR) and artificial intelligence (AI) framework, CLARAi, for objective pain detection and also localization direct from the patient’s brain in real time. </sec> <sec> <title>METHODS</title> Clinical dental pain was triggered in 21 patients by hypersensitive tooth stimulation with 20 consecutive descending cold stimulations (32°C-0°C). We used a portable optical neuroimaging technology, functional near-infrared spectroscopy, to gauge their cortical activity during evoked acute clinical pain. The data were decoded using a neural network (NN)–based AI algorithm to classify hemodynamic response data into pain and no-pain brain states in real time. We tested the performance of several networks (NN with 7 layers, 6 layers, 5 layers, 3 layers, recurrent NN, and long short-term memory network) upon reorganized data features on pain diction and localization in a simulated real-time environment. In addition, we also tested the feasibility of transmitting the neuroimaging data to an AR device, HoloLens, in the same simulated environment, allowing visualization of the ongoing cortical activity on a 3-dimensional brain template virtually plotted on the patients’ head during clinical consult. </sec> <sec> <title>RESULTS</title> The artificial neutral network (3-layer NN) achieved an optimal classification accuracy at 80.37% (126,000/156,680) for pain and no pain discrimination, with positive likelihood ratio (PLR) at 2.35. We further explored a 3-class localization task of left/right side pain and no-pain states, and convolutional NN-6 (6-layer NN) achieved highest classification accuracy at 74.23% (1040/1401) with PLR at 2.02. </sec> <sec> <title>CONCLUSIONS</title> Additional studies are needed to optimize and validate our prototype CLARAi framework for other pains and neurologic disorders. However, we presented an innovative and feasible neuroimaging-based AR/AI concept that can potentially transform the human brain into an objective target to visualize and precisely measure and localize pain in real time where it is most needed: in the doctor’s office. </sec> <sec> <title>INTERNATIONAL REGISTERED REPOR</title> RR1-10.2196/13594 </sec>" @default.
- W4234582303 created "2022-05-12" @default.
- W4234582303 creator A5003201637 @default.
- W4234582303 creator A5006013338 @default.
- W4234582303 creator A5009137264 @default.
- W4234582303 creator A5016763533 @default.
- W4234582303 creator A5035369421 @default.
- W4234582303 creator A5038270845 @default.
- W4234582303 creator A5049898620 @default.
- W4234582303 creator A5073758060 @default.
- W4234582303 creator A5079459565 @default.
- W4234582303 creator A5085337693 @default.
- W4234582303 date "2019-02-04" @default.
- W4234582303 modified "2023-09-27" @default.
- W4234582303 title "Feasibility of a Real-Time Clinical Augmented Reality and Artificial Intelligence Framework for Pain Detection and Localization From the Brain (Preprint)" @default.
- W4234582303 cites W2000856452 @default.
- W4234582303 cites W2005719968 @default.
- W4234582303 cites W2015452969 @default.
- W4234582303 cites W2045561515 @default.
- W4234582303 cites W2058046532 @default.
- W4234582303 cites W2068904026 @default.
- W4234582303 cites W2093188448 @default.
- W4234582303 cites W2148325172 @default.
- W4234582303 cites W2149351353 @default.
- W4234582303 cites W2156522227 @default.
- W4234582303 cites W2158037744 @default.
- W4234582303 cites W2163237764 @default.
- W4234582303 cites W2168963208 @default.
- W4234582303 cites W2525851202 @default.
- W4234582303 cites W2548572385 @default.
- W4234582303 cites W2753446035 @default.
- W4234582303 cites W2784189213 @default.
- W4234582303 cites W4236059846 @default.
- W4234582303 cites W4245057219 @default.
- W4234582303 doi "https://doi.org/10.2196/preprints.13594" @default.
- W4234582303 hasPublicationYear "2019" @default.
- W4234582303 type Work @default.
- W4234582303 citedByCount "0" @default.
- W4234582303 crossrefType "posted-content" @default.
- W4234582303 hasAuthorship W4234582303A5003201637 @default.
- W4234582303 hasAuthorship W4234582303A5006013338 @default.
- W4234582303 hasAuthorship W4234582303A5009137264 @default.
- W4234582303 hasAuthorship W4234582303A5016763533 @default.
- W4234582303 hasAuthorship W4234582303A5035369421 @default.
- W4234582303 hasAuthorship W4234582303A5038270845 @default.
- W4234582303 hasAuthorship W4234582303A5049898620 @default.
- W4234582303 hasAuthorship W4234582303A5073758060 @default.
- W4234582303 hasAuthorship W4234582303A5079459565 @default.
- W4234582303 hasAuthorship W4234582303A5085337693 @default.
- W4234582303 hasBestOaLocation W42345823032 @default.
- W4234582303 hasConcept C154945302 @default.
- W4234582303 hasConcept C15744967 @default.
- W4234582303 hasConcept C169760540 @default.
- W4234582303 hasConcept C41008148 @default.
- W4234582303 hasConcept C50644808 @default.
- W4234582303 hasConcept C58693492 @default.
- W4234582303 hasConcept C71924100 @default.
- W4234582303 hasConceptScore W4234582303C154945302 @default.
- W4234582303 hasConceptScore W4234582303C15744967 @default.
- W4234582303 hasConceptScore W4234582303C169760540 @default.
- W4234582303 hasConceptScore W4234582303C41008148 @default.
- W4234582303 hasConceptScore W4234582303C50644808 @default.
- W4234582303 hasConceptScore W4234582303C58693492 @default.
- W4234582303 hasConceptScore W4234582303C71924100 @default.
- W4234582303 hasLocation W42345823031 @default.
- W4234582303 hasLocation W42345823032 @default.
- W4234582303 hasOpenAccess W4234582303 @default.
- W4234582303 hasPrimaryLocation W42345823031 @default.
- W4234582303 hasRelatedWork W1445015017 @default.
- W4234582303 hasRelatedWork W2386387936 @default.
- W4234582303 hasRelatedWork W2415731916 @default.
- W4234582303 hasRelatedWork W2748952813 @default.
- W4234582303 hasRelatedWork W2765889516 @default.
- W4234582303 hasRelatedWork W2898044248 @default.
- W4234582303 hasRelatedWork W2899084033 @default.
- W4234582303 hasRelatedWork W2920938200 @default.
- W4234582303 hasRelatedWork W3107474891 @default.
- W4234582303 hasRelatedWork W4280550577 @default.
- W4234582303 isParatext "false" @default.
- W4234582303 isRetracted "false" @default.
- W4234582303 workType "article" @default.