Matches in SemOpenAlex for { <https://semopenalex.org/work/W4234968650> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4234968650 endingPage "131" @default.
- W4234968650 startingPage "125" @default.
- W4234968650 abstract "The most hardest situation to most software developers is determining where bugs are in applications. Finding them and repairing defects is expected to cost billions of pounds per year, and any automated assistance in accurately identifying where faults are, and concentrating tester efforts , would have a huge effect on software development and maintenance costs. So Work on defect detection has been going on for several years using regression methods and, lately, ML algos. To determine where there are defects therefore every organization’s main priority is to detect and fix faults in the early stages of the SDLC. This research has provided some insight into where flaws can be identified, but clinicians do not appear to have taken that on board. One explanation for this may be due to the difficulty in choosing and constructing predictive defect models. In the paper we actually analyze the reasons why the standard of the prediction is so varying due to the altering nature of the process of repairing defect. It primarily comprises two stages in the proposed system: a model development stage, and a prediction stage. In the model development our aim is to create a classifier with proven labels (i.e., broken or clean) by using deep learning and ML techniques from past improvements. This classifier would be used in the predictive stage to determine whether an uncertain shift were to be buggy or safe. Next, our Architecture derives a range of functions from a training package. Next, we do preprocessing of data on the characteristics obtained. Preprocessing of the data involves two counter-steps: normalization of the data and re-sampling. In normalization, we turn the values of all featured to values in the interval from 0 to 1. A deep learning technique such as LSTM & SVM is used. In the prediction stage, the classifier is then used to predict whether a change with an unfamiliar label is buggy or safe(clean). We will evaluate on four datasets from four well-known Open source software, including Mozilla, Eclipse, Net beans and Open Office programs." @default.
- W4234968650 created "2022-05-12" @default.
- W4234968650 date "2020-05-10" @default.
- W4234968650 modified "2023-10-18" @default.
- W4234968650 title "A New Method for Software Projects for Predicting Defects using LSTM and SVM" @default.
- W4234968650 doi "https://doi.org/10.35940/ijitee.f4317.059720" @default.
- W4234968650 hasPublicationYear "2020" @default.
- W4234968650 type Work @default.
- W4234968650 citedByCount "0" @default.
- W4234968650 crossrefType "journal-article" @default.
- W4234968650 hasBestOaLocation W42349686501 @default.
- W4234968650 hasConcept C10551718 @default.
- W4234968650 hasConcept C111919701 @default.
- W4234968650 hasConcept C119857082 @default.
- W4234968650 hasConcept C12267149 @default.
- W4234968650 hasConcept C124101348 @default.
- W4234968650 hasConcept C127413603 @default.
- W4234968650 hasConcept C154945302 @default.
- W4234968650 hasConcept C199360897 @default.
- W4234968650 hasConcept C200601418 @default.
- W4234968650 hasConcept C2777904410 @default.
- W4234968650 hasConcept C34736171 @default.
- W4234968650 hasConcept C41008148 @default.
- W4234968650 hasConcept C45804977 @default.
- W4234968650 hasConcept C529173508 @default.
- W4234968650 hasConcept C95623464 @default.
- W4234968650 hasConcept C98045186 @default.
- W4234968650 hasConceptScore W4234968650C10551718 @default.
- W4234968650 hasConceptScore W4234968650C111919701 @default.
- W4234968650 hasConceptScore W4234968650C119857082 @default.
- W4234968650 hasConceptScore W4234968650C12267149 @default.
- W4234968650 hasConceptScore W4234968650C124101348 @default.
- W4234968650 hasConceptScore W4234968650C127413603 @default.
- W4234968650 hasConceptScore W4234968650C154945302 @default.
- W4234968650 hasConceptScore W4234968650C199360897 @default.
- W4234968650 hasConceptScore W4234968650C200601418 @default.
- W4234968650 hasConceptScore W4234968650C2777904410 @default.
- W4234968650 hasConceptScore W4234968650C34736171 @default.
- W4234968650 hasConceptScore W4234968650C41008148 @default.
- W4234968650 hasConceptScore W4234968650C45804977 @default.
- W4234968650 hasConceptScore W4234968650C529173508 @default.
- W4234968650 hasConceptScore W4234968650C95623464 @default.
- W4234968650 hasConceptScore W4234968650C98045186 @default.
- W4234968650 hasIssue "7" @default.
- W4234968650 hasLocation W42349686501 @default.
- W4234968650 hasOpenAccess W4234968650 @default.
- W4234968650 hasPrimaryLocation W42349686501 @default.
- W4234968650 hasRelatedWork W10014481 @default.
- W4234968650 hasRelatedWork W13034104 @default.
- W4234968650 hasRelatedWork W13088575 @default.
- W4234968650 hasRelatedWork W1362903 @default.
- W4234968650 hasRelatedWork W2792292 @default.
- W4234968650 hasRelatedWork W4680410 @default.
- W4234968650 hasRelatedWork W728297 @default.
- W4234968650 hasRelatedWork W7432053 @default.
- W4234968650 hasRelatedWork W9481221 @default.
- W4234968650 hasRelatedWork W9778490 @default.
- W4234968650 hasVolume "9" @default.
- W4234968650 isParatext "false" @default.
- W4234968650 isRetracted "false" @default.
- W4234968650 workType "article" @default.