Matches in SemOpenAlex for { <https://semopenalex.org/work/W4235109644> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4235109644 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Fast Edge Orientation for Unweighted GraphsAnand Bhalgat and Ramesh HariharanAnand Bhalgat and Ramesh Hariharanpp.265 - 272Chapter DOI:https://doi.org/10.1137/1.9781611973068.30PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We consider an unweighted undirected graph with n vertices, m edges, and edge-connectivity 2k. The weak edge orientation problem requires that the edges of this graph be oriented so the resulting directed graph is at least k edge-connected. Nash-Williams proved the existence of such orientations and subsequently Frank [6], Gabow [7], and Nagamochi-Ibaraki [12] gave algorithmic constructions. All of these algorithms took time at least quadratic in n. We provide the first sub-quadratic (in n) algorithm for this problem. Our algorithm takes Õ(nk4 + m) time. This improves the previous best bounds of Õ(n2k2 +m) by Gabow [7] and Õ(n2m) by Nagamochi-Ibaraki [12] when k ≤ √n. Indeed, many real networks have k ≪ n. Our algorithm uses the fast edge splitting paradigm introduced by Bhalgat et al. [2]. We seek to split out a large fraction of the vertices, recurse on the resulting graph, and then put back the split-off vertices. The main challenge we face is that only vertices with even degree may be split-off in an undirected graph and there may not be any such vertex in the current graph. The edge orientation algorithms of Gabow and Nagamochi-Ibaraki as well as Frank's proof are based on showing the existence of at least two even degree vertices (in fact, vertices with degree 2k) in a 2k minimally connected graph. We generalize this to show that in any edge minimal 2k edge-connected graph, there are at least n/3 even degree vertices. These vertices are then split-off. Our next challenge is to drop edges from the given graph so it remains 2k connected and yet has Ω(n) even degree vertices. We provide an algorithm that discards edges specifically to produce Ω(n) even degree vertices while maintaining connectivity 2k and takes time O(nk 4 +m). Note that this algorithm does not necessarily make the graph edge-minimally 2k edge-connected. We also briefly outline an Õ(nk5 + m) time algorithm that achieves edge-minimality which improves the previous best bound of O(m + n2k2) by Gabow [7]. Previous chapter Next chapter RelatedDetails Published:2009ISBN:978-0-89871-680-1eISBN:978-1-61197-306-8 https://doi.org/10.1137/1.9781611973068Book Series Name:ProceedingsBook Code:PR132Book Pages:xviii + 1288" @default.
- W4235109644 created "2022-05-12" @default.
- W4235109644 creator A5033068215 @default.
- W4235109644 creator A5081911341 @default.
- W4235109644 date "2009-01-04" @default.
- W4235109644 modified "2023-10-16" @default.
- W4235109644 title "Fast Edge Orientation for Unweighted Graphs" @default.
- W4235109644 doi "https://doi.org/10.1137/1.9781611973068.30" @default.
- W4235109644 hasPublicationYear "2009" @default.
- W4235109644 type Work @default.
- W4235109644 citedByCount "5" @default.
- W4235109644 countsByYear W42351096442014 @default.
- W4235109644 countsByYear W42351096442017 @default.
- W4235109644 countsByYear W42351096442020 @default.
- W4235109644 countsByYear W42351096442023 @default.
- W4235109644 crossrefType "proceedings-article" @default.
- W4235109644 hasAuthorship W4235109644A5033068215 @default.
- W4235109644 hasAuthorship W4235109644A5081911341 @default.
- W4235109644 hasConcept C11413529 @default.
- W4235109644 hasConcept C114614502 @default.
- W4235109644 hasConcept C118615104 @default.
- W4235109644 hasConcept C129844170 @default.
- W4235109644 hasConcept C132525143 @default.
- W4235109644 hasConcept C203776342 @default.
- W4235109644 hasConcept C22149727 @default.
- W4235109644 hasConcept C2524010 @default.
- W4235109644 hasConcept C3018234147 @default.
- W4235109644 hasConcept C33923547 @default.
- W4235109644 hasConcept C41008148 @default.
- W4235109644 hasConcept C53052385 @default.
- W4235109644 hasConcept C80899671 @default.
- W4235109644 hasConceptScore W4235109644C11413529 @default.
- W4235109644 hasConceptScore W4235109644C114614502 @default.
- W4235109644 hasConceptScore W4235109644C118615104 @default.
- W4235109644 hasConceptScore W4235109644C129844170 @default.
- W4235109644 hasConceptScore W4235109644C132525143 @default.
- W4235109644 hasConceptScore W4235109644C203776342 @default.
- W4235109644 hasConceptScore W4235109644C22149727 @default.
- W4235109644 hasConceptScore W4235109644C2524010 @default.
- W4235109644 hasConceptScore W4235109644C3018234147 @default.
- W4235109644 hasConceptScore W4235109644C33923547 @default.
- W4235109644 hasConceptScore W4235109644C41008148 @default.
- W4235109644 hasConceptScore W4235109644C53052385 @default.
- W4235109644 hasConceptScore W4235109644C80899671 @default.
- W4235109644 hasLocation W42351096441 @default.
- W4235109644 hasOpenAccess W4235109644 @default.
- W4235109644 hasPrimaryLocation W42351096441 @default.
- W4235109644 hasRelatedWork W1544449826 @default.
- W4235109644 hasRelatedWork W1969180675 @default.
- W4235109644 hasRelatedWork W2012366085 @default.
- W4235109644 hasRelatedWork W2519362558 @default.
- W4235109644 hasRelatedWork W2527745573 @default.
- W4235109644 hasRelatedWork W2751810700 @default.
- W4235109644 hasRelatedWork W2950484411 @default.
- W4235109644 hasRelatedWork W3159754125 @default.
- W4235109644 hasRelatedWork W4205772203 @default.
- W4235109644 hasRelatedWork W4301046126 @default.
- W4235109644 isParatext "false" @default.
- W4235109644 isRetracted "false" @default.
- W4235109644 workType "article" @default.