Matches in SemOpenAlex for { <https://semopenalex.org/work/W4235873463> ?p ?o ?g. }
- W4235873463 abstract "<sec> <title>BACKGROUND</title> Dermatoglyphics is the study of skin patterns on hands and feet. It has been shown in some studies that specific finger patterns could be a risk factor of breast cancer. There are several studies using data mining methods to evaluate the risk of breast cancer; while there is no or little study that evaluates finger patterns with data mining for breast cancer risk prediction. </sec> <sec> <title>OBJECTIVE</title> This study aims to evaluate fingerprint patterns along with other easy-to-obtain features in the risk of breast cancer. </sec> <sec> <title>METHODS</title> A dataset containing 462 records includes female patients in Imam Khomeini Hospital Complex, Tehran, Iran was obtained. The dataset has comprised of age, menstruation age, menopause age, and situation, has a child, age at first live birth, family history of breast cancer, and figure print patterns features of hands. The factors weight was determined by the Information Gain index. Predictive models were built once without fingerprint features and once with fingerprint features using Naïve Bayes, Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and Deep Learning classifiers. </sec> <sec> <title>RESULTS</title> The most important factor determining breast cancer were age, having a child, menopause situation, and menopause age. The best performance belongs to the RF model with accuracy and AUC of 84.43% and 0.923 respectively. The fingerprint patterns feature increased the RF accuracy from 79.44% to 84.43%. </sec> <sec> <title>CONCLUSIONS</title> An early breast cancer screening model could be built with the use of data mining methods. The fingerprint patterns could increase the performance of these models. The Random Forest model could be used. The results of such models could be used in designing apps for self-screening breast cancer. </sec>" @default.
- W4235873463 created "2022-05-12" @default.
- W4235873463 creator A5018270442 @default.
- W4235873463 creator A5021798783 @default.
- W4235873463 creator A5029158330 @default.
- W4235873463 creator A5084609525 @default.
- W4235873463 date "2020-05-03" @default.
- W4235873463 modified "2023-09-26" @default.
- W4235873463 title "Early Breast Cancer Prediction Using Dermatoglyphics: Data Mining Pilot Study in a General Hospital in Iran (Preprint)" @default.
- W4235873463 cites W1737947457 @default.
- W4235873463 cites W1982507712 @default.
- W4235873463 cites W1983024255 @default.
- W4235873463 cites W1985335097 @default.
- W4235873463 cites W1994307947 @default.
- W4235873463 cites W2000515020 @default.
- W4235873463 cites W2001779454 @default.
- W4235873463 cites W2022612475 @default.
- W4235873463 cites W2040497513 @default.
- W4235873463 cites W2046273024 @default.
- W4235873463 cites W2059944840 @default.
- W4235873463 cites W2063669088 @default.
- W4235873463 cites W2093319385 @default.
- W4235873463 cites W2110488192 @default.
- W4235873463 cites W2136124005 @default.
- W4235873463 cites W2165413853 @default.
- W4235873463 cites W2169666080 @default.
- W4235873463 cites W2215629001 @default.
- W4235873463 cites W2322064349 @default.
- W4235873463 cites W2342352817 @default.
- W4235873463 cites W2474004041 @default.
- W4235873463 cites W2606090416 @default.
- W4235873463 cites W2610332124 @default.
- W4235873463 cites W2727347885 @default.
- W4235873463 cites W2771091618 @default.
- W4235873463 cites W2779541678 @default.
- W4235873463 cites W2782881162 @default.
- W4235873463 cites W2788773850 @default.
- W4235873463 cites W2889646458 @default.
- W4235873463 cites W2890147934 @default.
- W4235873463 cites W2890377324 @default.
- W4235873463 cites W2890732967 @default.
- W4235873463 cites W2896238141 @default.
- W4235873463 cites W2909675154 @default.
- W4235873463 cites W2917014770 @default.
- W4235873463 cites W2919115771 @default.
- W4235873463 cites W2928842276 @default.
- W4235873463 cites W2944016032 @default.
- W4235873463 cites W2949955266 @default.
- W4235873463 cites W384305842 @default.
- W4235873463 cites W4232325199 @default.
- W4235873463 cites W4246910327 @default.
- W4235873463 cites W4247817655 @default.
- W4235873463 doi "https://doi.org/10.2196/preprints.19829" @default.
- W4235873463 hasPublicationYear "2020" @default.
- W4235873463 type Work @default.
- W4235873463 citedByCount "0" @default.
- W4235873463 crossrefType "posted-content" @default.
- W4235873463 hasAuthorship W4235873463A5018270442 @default.
- W4235873463 hasAuthorship W4235873463A5021798783 @default.
- W4235873463 hasAuthorship W4235873463A5029158330 @default.
- W4235873463 hasAuthorship W4235873463A5084609525 @default.
- W4235873463 hasConcept C119857082 @default.
- W4235873463 hasConcept C121608353 @default.
- W4235873463 hasConcept C12267149 @default.
- W4235873463 hasConcept C126322002 @default.
- W4235873463 hasConcept C131872663 @default.
- W4235873463 hasConcept C154945302 @default.
- W4235873463 hasConcept C166957645 @default.
- W4235873463 hasConcept C169258074 @default.
- W4235873463 hasConcept C205649164 @default.
- W4235873463 hasConcept C2776100373 @default.
- W4235873463 hasConcept C29456083 @default.
- W4235873463 hasConcept C41008148 @default.
- W4235873463 hasConcept C4258228 @default.
- W4235873463 hasConcept C52001869 @default.
- W4235873463 hasConcept C530470458 @default.
- W4235873463 hasConcept C71924100 @default.
- W4235873463 hasConceptScore W4235873463C119857082 @default.
- W4235873463 hasConceptScore W4235873463C121608353 @default.
- W4235873463 hasConceptScore W4235873463C12267149 @default.
- W4235873463 hasConceptScore W4235873463C126322002 @default.
- W4235873463 hasConceptScore W4235873463C131872663 @default.
- W4235873463 hasConceptScore W4235873463C154945302 @default.
- W4235873463 hasConceptScore W4235873463C166957645 @default.
- W4235873463 hasConceptScore W4235873463C169258074 @default.
- W4235873463 hasConceptScore W4235873463C205649164 @default.
- W4235873463 hasConceptScore W4235873463C2776100373 @default.
- W4235873463 hasConceptScore W4235873463C29456083 @default.
- W4235873463 hasConceptScore W4235873463C41008148 @default.
- W4235873463 hasConceptScore W4235873463C4258228 @default.
- W4235873463 hasConceptScore W4235873463C52001869 @default.
- W4235873463 hasConceptScore W4235873463C530470458 @default.
- W4235873463 hasConceptScore W4235873463C71924100 @default.
- W4235873463 hasLocation W42358734631 @default.
- W4235873463 hasOpenAccess W4235873463 @default.
- W4235873463 hasPrimaryLocation W42358734631 @default.
- W4235873463 hasRelatedWork W10078604 @default.
- W4235873463 hasRelatedWork W10512665 @default.
- W4235873463 hasRelatedWork W12558792 @default.
- W4235873463 hasRelatedWork W14146661 @default.