Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236014716> ?p ?o ?g. }
- W4236014716 abstract "Abstract. Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a 3-stage and a 5-stage collector were applied and samples were analysed for inorganic ions (SO42−, NO3−, NH4+, Cl−, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 μmol L−1 for ammonium, nitrate, and sulfate, respectively, between 4 and 27 μmol L−1 for minor ions, 5.4 μmol L−1 for H2O2 (aq), 1.9 μmol L−1 for S(IV), and 3.9 mgC L−1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC · 1.8) contributed 20–40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60–66 % for solute concentrations and 52–80 % for cloud water loadings (CWLs). Contrary to some earlier suggestions, the similar variability of solute concentrations and CWLs together with the results of back trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC) was the main factor controlling bulk solute concentrations at Mt. Schmücke. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CV) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56–0.94, 0.79–0.99, 0.71–98, and 0.67–0.92 for SO42−, NO3−, NH4+, and DOC, respectively, when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42−, NO3−, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and U-shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the 3-stage collector and somewhat more pronounced from the 5-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the 5-stage collector was capable of resolving some features of solute size dependencies not seen in the 3-stage data, especially sharp concentration increases (up to a factor of 5–10) in the smallest droplets for many solutes." @default.
- W4236014716 created "2022-05-12" @default.
- W4236014716 creator A5003239040 @default.
- W4236014716 creator A5006429684 @default.
- W4236014716 creator A5009574916 @default.
- W4236014716 creator A5023101894 @default.
- W4236014716 creator A5039175769 @default.
- W4236014716 creator A5053293961 @default.
- W4236014716 creator A5065128410 @default.
- W4236014716 creator A5065227860 @default.
- W4236014716 creator A5084944789 @default.
- W4236014716 date "2015-09-08" @default.
- W4236014716 modified "2023-10-17" @default.
- W4236014716 title "Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon" @default.
- W4236014716 cites W1679483972 @default.
- W4236014716 cites W1964903133 @default.
- W4236014716 cites W1965436232 @default.
- W4236014716 cites W1966498309 @default.
- W4236014716 cites W1969421514 @default.
- W4236014716 cites W1973609882 @default.
- W4236014716 cites W1980023069 @default.
- W4236014716 cites W1980725928 @default.
- W4236014716 cites W1985293027 @default.
- W4236014716 cites W1986143910 @default.
- W4236014716 cites W1986606876 @default.
- W4236014716 cites W1987039033 @default.
- W4236014716 cites W1987112114 @default.
- W4236014716 cites W1987412297 @default.
- W4236014716 cites W1989983093 @default.
- W4236014716 cites W1993717104 @default.
- W4236014716 cites W1994642848 @default.
- W4236014716 cites W1995356526 @default.
- W4236014716 cites W2001984511 @default.
- W4236014716 cites W2002565006 @default.
- W4236014716 cites W2002817748 @default.
- W4236014716 cites W2004170231 @default.
- W4236014716 cites W2004406607 @default.
- W4236014716 cites W2005900731 @default.
- W4236014716 cites W2009914860 @default.
- W4236014716 cites W2010660621 @default.
- W4236014716 cites W2011076017 @default.
- W4236014716 cites W2012375906 @default.
- W4236014716 cites W2015571925 @default.
- W4236014716 cites W2015629468 @default.
- W4236014716 cites W2025854703 @default.
- W4236014716 cites W2028489157 @default.
- W4236014716 cites W2028926475 @default.
- W4236014716 cites W2030839260 @default.
- W4236014716 cites W2033286370 @default.
- W4236014716 cites W2035474705 @default.
- W4236014716 cites W2035602024 @default.
- W4236014716 cites W2036759044 @default.
- W4236014716 cites W2037116116 @default.
- W4236014716 cites W2046677847 @default.
- W4236014716 cites W2055444876 @default.
- W4236014716 cites W2055764751 @default.
- W4236014716 cites W2056603074 @default.
- W4236014716 cites W2057713323 @default.
- W4236014716 cites W2058155267 @default.
- W4236014716 cites W2062601487 @default.
- W4236014716 cites W2065510216 @default.
- W4236014716 cites W2068343865 @default.
- W4236014716 cites W2070419840 @default.
- W4236014716 cites W2073122382 @default.
- W4236014716 cites W2076741322 @default.
- W4236014716 cites W2076991153 @default.
- W4236014716 cites W2079287838 @default.
- W4236014716 cites W2079303714 @default.
- W4236014716 cites W2081685080 @default.
- W4236014716 cites W2083734951 @default.
- W4236014716 cites W2084354167 @default.
- W4236014716 cites W2088806198 @default.
- W4236014716 cites W2089307597 @default.
- W4236014716 cites W2091263190 @default.
- W4236014716 cites W2091761766 @default.
- W4236014716 cites W2099023033 @default.
- W4236014716 cites W2104123850 @default.
- W4236014716 cites W2105055181 @default.
- W4236014716 cites W2128578425 @default.
- W4236014716 cites W2129142018 @default.
- W4236014716 cites W2130280003 @default.
- W4236014716 cites W2136847416 @default.
- W4236014716 cites W2137786972 @default.
- W4236014716 cites W2139662647 @default.
- W4236014716 cites W2145186895 @default.
- W4236014716 cites W2145228326 @default.
- W4236014716 cites W2151271603 @default.
- W4236014716 cites W2151523319 @default.
- W4236014716 cites W2151974479 @default.
- W4236014716 cites W2164011109 @default.
- W4236014716 cites W2171801603 @default.
- W4236014716 cites W2298456115 @default.
- W4236014716 cites W4229729488 @default.
- W4236014716 cites W4230096730 @default.
- W4236014716 cites W4240522344 @default.
- W4236014716 cites W4245731034 @default.
- W4236014716 cites W4249918779 @default.
- W4236014716 cites W4250879238 @default.
- W4236014716 doi "https://doi.org/10.5194/acpd-15-24311-2015" @default.
- W4236014716 hasPublicationYear "2015" @default.