Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236022651> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4236022651 endingPage "367" @default.
- W4236022651 startingPage "365" @default.
- W4236022651 abstract "Free Access Bibliography Eric Chin, Eric Chin MSc in Applied Statistics and an MSc in Mathematical Finance both from University of Oxford; PhD in Mathematics from University of Dundee, UKSearch for more papers by this authorDian Nel, Dian Nel BEng in Electrical and Electronic Engineering from Stellenbosch University; MSc in Mathematical Finance from Christ Church, Oxford University; Chartered Engineer registered with the Engineering Council, UKSearch for more papers by this authorSverrir Ólafsson, Sverrir Ólafsson MSc and PhD in mathematical physics from the Universities of Tübingen and Karlsruhe, GermanySearch for more papers by this author Book Author(s):Eric Chin, Eric Chin MSc in Applied Statistics and an MSc in Mathematical Finance both from University of Oxford; PhD in Mathematics from University of Dundee, UKSearch for more papers by this authorDian Nel, Dian Nel BEng in Electrical and Electronic Engineering from Stellenbosch University; MSc in Mathematical Finance from Christ Church, Oxford University; Chartered Engineer registered with the Engineering Council, UKSearch for more papers by this authorSverrir Ólafsson, Sverrir Ólafsson MSc and PhD in mathematical physics from the Universities of Tübingen and Karlsruhe, GermanySearch for more papers by this author First published: 02 September 2014 https://doi.org/10.1002/9781118845141.biblio AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abramovitz, M. and Stegun, I.A. (1970). Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables. Dover Publications, New York. Bachelier, L. (1900). Théorie de la spéculation. Annales Scientifiques de l'École Normale Supérieure, 3(17), pp. 21– 86. Baz, J. and Chacko, G. (2004). Financial Derivatives: Pricing, Applications and Mathematics. Cambridge University Press, Cambridge. Björk, T. (2009). Arbitrage Theory in Continuous Time, 3rd edn. Oxford Finance Series, Oxford University Press, Oxford. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, pp. 637– 654. Brezeźniak, Z. and Zastawniak, T. (1999). Basic Stochastic Processes. Springer-Verlag, Berlin. Brown, R. (1828). A brief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants. The Miscellaneous Botanical Works of Robert Brown: Volume 1, John J. Bennet (ed), R. Hardwicke, London. Capiński, M., Kopp, E. and Traple, J. (2012). Stochastic Calculus for Finance. Cambridge University Press, Cambridge. Clark, I.J. (2011). Foreign Exchange Option Pricing: A Practitioner's Guide. John Wiley and Sons Ltd, Chichester, United Kingdom. Clark, I.J. (2014). Commodity Option Pricing: A Practitioner's Guide. John Wiley and Sons Ltd, Chichester, United Kingdom. Clewlow, S. and Strickland, C. (1999). Valuing energy options in a one factor model fitted to forward prices. Working Paper, School of Finance and Economics, University of Technology, Sydney, Australia. Cont, R. and Tankov, P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC, London. Cox, J.C. (1996). The constant elasticity of variance option pricing model. The Journal of Portfolio Management, Special Issue, pp. 15– 17. Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985). A theory of the term structure of interest rates. Econometrica, 53, pp. 385– 407. Dufresne, D. (2001). The integrated square-root process. Research Paper Number 90, Centre for Actuarial Studies, Department of Economics, University of Melbourne, Australia. Einstein, A. (1956). Investigations of the Theory of Brownian Movement. Republication of the original 1926 translation, Dover Publications Inc. Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38(1), pp. 34– 105. Gabillon, J. (1991). The term structures of oil futures prices. Working Paper, Oxford Institute for Energy Studies, Oxford, UK. Garman, M.B. and Kohlhagen, S.W. (1983). Foreign currency option values. Journal of International Money and Finance, 2, pp. 231– 237. Geman, H. (2005). Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy. John Wiley & Sons, Chichester. Girsanov, I. (1960). On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. SIAM Theory of Probability and Applications, 5(3), pp. 285– 301. Gradshteyn, I.S. and Ryzhik, I.M. (1980). Table of Integrals, Series and Products, Jeffrey, A. (ed.). Academic Press, New York. Grimmett, G. and Strizaker, D. (2001). Probability and Random Processes, 3rd edn. Oxford University Press, Oxford. Harrison, J.M. and Kreps, D.M. (1979). Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory, 20, pp. 381– 408. Harrison, J.M. and Pliska, S.R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11, pp. 215– 260. Harrison, J.M. and Pliska, S.R. (1983). A stochastic calculus model of continuous trading: Complete markets. Stochastic Processes and their Applications, 15, pp. 313– 316. Heston, S.L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), pp. 327– 343. Ho, S.Y. and Lee, S.B. (2004). The Oxford Guide to Financial Modeling: Applications for CapitalMarkets, Corporate Finance, Risk Management and Financial Institutions. Oxford University Press, Oxford, United Kingdom. Hsu, Y.L., Lin, T.I. and Lee, C.F. (2008). Constant elasticity of variance (CEV) option pricing model: Integration and detail derivation. Mathematics and Computers in Simulation, 79(1), pp. 60– 71. Hull, J. (2011). Options, Futures, and Other Derivatives, 6th edn. Prentice Hall, Englewood Cliffs, NJ. Itō, K. (1951). On stochastic differential equations: Memoirs. American Mathematical Society, 4, pp. 1– 51. Joshi, M. (2008). The Concepts and Practice of Mathematical Finance, 2nd edn. Cambridge University Press, Cambridge. Joshi, M. (2011). More Mathematical Finance. Pilot Whale Press, Melbourne. Jowett, B. and Campbell, L. (1894). Plato's Republic, The Greek Text, Edited with Notes and Essays. Clarendon Press, Oxford. Kac, M. (1949). On distributions of certain Wiener functionals. Transactions of the American Mathematical Society, 65(1), pp. 1– 13. Karatzas, I. and Shreve, S.E. (2004). Brownian Motion and Stochastic Calculus, 2nd edn. Springer-Verlag, Berlin. Kluge, T. (2006). Pricing Swing Options and Other Electricity Derivatives. DPhil Thesis, University of Oxford. Kolmogorov, A. (1931), Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen, 104, pp. 415– 458. Kou, S.G. (2002). A jump-diffusion model for option pricing. Management Science, 48, pp. 1086– 1101. Kwok, Y.K. (2008). Mathematical Models of Financial Derivatives, 2nd edn. Springer-Verlag, Berlin. Lucia, J.J. and Schwartz, E.S. (2002). Electricity prices and power derivatives: Evidence from the Nordic Power Exchange. Review of Derivatives Research, 5, pp. 5– 50. Merton, R. (1973). The theory of rational option pricing. Bell Journal of Economics and Management Science, 4, pp. 141– 183. Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, pp. 125– 144. Musiela, M. and Rutkowski, M. (2007). Martingale Methods in Financial Modelling, 2nd edn. Springer-Verlag, Berlin. Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer-Verlag, Heidelberg. Rice, J.A. (2007). Mathematical Statistics and Data Analysis, 3rd edn. Duxbury, Belmont, CA. Ross, S. (2002). A First Course in Probability, 6th edn. Prentice Hall, Englewood Cliffs, NJ. Samuelson, P.A. (1965). Rational theory of warrant pricing. Industrial Management Review, 6(2), pp. 13– 31. Shreve, S.E. (2005). Stochastic Calculus for Finance; Volume I: The Binomial Asset Pricing Models. Springer-Verlag, New York. Shreve, S.E. (2008). Stochastic Calculus for Finance; Volume II: Continuous-Time Models. Springer-Verlag, New York. Stulz, R.M. (1982). Options on the minimum or the maximum of two risky assets: Analysis and applications. Journal of Financial Economics, 10, pp. 161– 185. Wiener, N. (1923). Differential space. Journal of Mathematical Physics, 2, pp. 131– 174. Wilmott, P., Dewynne, J. and Howison, S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford. Problems and Solutions in Mathematical Finance ReferencesRelatedInformation" @default.
- W4236022651 created "2022-05-12" @default.
- W4236022651 date "2014-09-02" @default.
- W4236022651 modified "2023-09-25" @default.
- W4236022651 title "Bibliography" @default.
- W4236022651 cites W1499969990 @default.
- W4236022651 cites W1552108148 @default.
- W4236022651 cites W1985018066 @default.
- W4236022651 cites W2005308357 @default.
- W4236022651 cites W2008556354 @default.
- W4236022651 cites W2019233289 @default.
- W4236022651 cites W2020041898 @default.
- W4236022651 cites W2041550349 @default.
- W4236022651 cites W2049258568 @default.
- W4236022651 cites W2064978316 @default.
- W4236022651 cites W2077791698 @default.
- W4236022651 cites W2083731191 @default.
- W4236022651 cites W2090637028 @default.
- W4236022651 cites W2113687945 @default.
- W4236022651 cites W2151065060 @default.
- W4236022651 cites W2326274585 @default.
- W4236022651 cites W3021444882 @default.
- W4236022651 cites W3122167020 @default.
- W4236022651 cites W4230934093 @default.
- W4236022651 cites W4231057775 @default.
- W4236022651 cites W4238187298 @default.
- W4236022651 cites W4244473763 @default.
- W4236022651 cites W4246580877 @default.
- W4236022651 cites W577343477 @default.
- W4236022651 cites W69337820 @default.
- W4236022651 doi "https://doi.org/10.1002/9781118845141.biblio" @default.
- W4236022651 hasPublicationYear "2014" @default.
- W4236022651 type Work @default.
- W4236022651 citedByCount "0" @default.
- W4236022651 crossrefType "other" @default.
- W4236022651 hasBestOaLocation W42360226511 @default.
- W4236022651 hasConcept C41008148 @default.
- W4236022651 hasConceptScore W4236022651C41008148 @default.
- W4236022651 hasLocation W42360226511 @default.
- W4236022651 hasOpenAccess W4236022651 @default.
- W4236022651 hasPrimaryLocation W42360226511 @default.
- W4236022651 hasRelatedWork W1596801655 @default.
- W4236022651 hasRelatedWork W2130043461 @default.
- W4236022651 hasRelatedWork W2350741829 @default.
- W4236022651 hasRelatedWork W2358668433 @default.
- W4236022651 hasRelatedWork W2376932109 @default.
- W4236022651 hasRelatedWork W2382290278 @default.
- W4236022651 hasRelatedWork W2390279801 @default.
- W4236022651 hasRelatedWork W2748952813 @default.
- W4236022651 hasRelatedWork W2899084033 @default.
- W4236022651 hasRelatedWork W2530322880 @default.
- W4236022651 isParatext "false" @default.
- W4236022651 isRetracted "false" @default.
- W4236022651 workType "other" @default.