Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236053402> ?p ?o ?g. }
- W4236053402 endingPage "15" @default.
- W4236053402 startingPage "1" @default.
- W4236053402 abstract "Abstract In the absence of direct experimental information, one often must rely on knowledge of thermodynamic properties to predict the chemical behavior of a material under operating conditions. For such applications, the standard molar Gibbs energy of formation is particularly powerful; it is frequently derived by combining the standard molar entropy of formation and the standard molar enthalpy of formation , often as functions of temperature and pressure. It follows, therefore, that the standard molar enthalpy of formation, , is among the most valuable and fundamental thermodynamic properties of a material. This quantity is defined as the enthalpy change that occurs upon the formation of the compound in its standard state from the component elements in their standard states, at a designated reference temperature, usually (but not necessarily) 298.15 K, and at a standard pressure, currently taken to be 100 kPa. Many methods have been devised to obtain experimentally. Those include the so‐called second‐ and third‐law treatments of Knudsen effusion and mass‐spectrometric results from high‐temperature vaporization observations, as well as EMF results from high‐temperature galvanic cell studies (Kubaschewski et al., 1993). Each of those techniques yields for the studied process at a given temperature. To derive values of , the high‐temperature results for must be combined with auxiliary thermodynamic information (heat capacities and enthalpy increments at elevated temperatures). Frequently, it turns out that the latter properties have not been measured, so they must be estimated (Kubaschewski et al., 1993), with a consequent degradation in the accuracy of the derived . Furthermore, high‐temperature thermodynamic studies of the kind outlined here often suffer from uncertainties concerning the identities of species in equilibrium. Another potential source of error arises from chemical interactions of the substances or their vapors with materials of construction of Knudsen or galvanic cells. All in all, these approaches do not, as a rule, yield precise values of . Sometimes, however, they are the only practical methods available to the investigator. Alternative procedures involve measurements of the enthalpies (or enthalpy changes) of chemical reactions, of a substance and the elements of which it is composed. Experimentally, the strategy adopted in such determinations is dictated largely by the chemical properties of the substance and by the equipment available in the laboratory. The most obvious approach involves direct combination of the elements, an example of which is the combustion of gaseous H 2 in O 2 to form H 2 O. In the laboratory, however, it is often impossible under experimental conditions to combine the elements to form a particular compound quantitatively. An alternative, albeit less direct route has been used extensively for the past century or more, and involves measurements of the enthalpy change associated with a suitable chemical reaction of the material of interest. Here, the compound is “destroyed” rather than formed. Such chemical reactions have involved, inter alia , dissolution in a mineral acid or molten salt (Marsh and O'Hare, 1994) and the construction of an appropriate thermochemical cycle, thermal decomposition to discrete products (Gunn, 1972), or combustion in a gas such as oxygen or a halogen. This last method is the subject matter of this article." @default.
- W4236053402 created "2022-05-12" @default.
- W4236053402 creator A5015860384 @default.
- W4236053402 creator A5046581548 @default.
- W4236053402 creator A5089074445 @default.
- W4236053402 date "2012-10-12" @default.
- W4236053402 modified "2023-10-09" @default.
- W4236053402 title "Combustion Calorimetry" @default.
- W4236053402 cites W190510737 @default.
- W4236053402 cites W1971871512 @default.
- W4236053402 cites W1979530307 @default.
- W4236053402 cites W1979702201 @default.
- W4236053402 cites W1990620391 @default.
- W4236053402 cites W1998921248 @default.
- W4236053402 cites W2001265409 @default.
- W4236053402 cites W2007635434 @default.
- W4236053402 cites W2018070376 @default.
- W4236053402 cites W2022982059 @default.
- W4236053402 cites W2033636614 @default.
- W4236053402 cites W2038577875 @default.
- W4236053402 cites W2050306332 @default.
- W4236053402 cites W2050680762 @default.
- W4236053402 cites W2051836565 @default.
- W4236053402 cites W2052017114 @default.
- W4236053402 cites W2057487362 @default.
- W4236053402 cites W2076056700 @default.
- W4236053402 cites W2077323566 @default.
- W4236053402 cites W2088688167 @default.
- W4236053402 cites W2093333208 @default.
- W4236053402 cites W2094690467 @default.
- W4236053402 cites W2100727063 @default.
- W4236053402 cites W226635435 @default.
- W4236053402 cites W2313750429 @default.
- W4236053402 cites W2316792230 @default.
- W4236053402 cites W2324126935 @default.
- W4236053402 cites W2334984579 @default.
- W4236053402 cites W2335550038 @default.
- W4236053402 cites W4229616429 @default.
- W4236053402 cites W979052 @default.
- W4236053402 doi "https://doi.org/10.1002/0471266965.com031.pub2" @default.
- W4236053402 hasPublicationYear "2012" @default.
- W4236053402 type Work @default.
- W4236053402 citedByCount "0" @default.
- W4236053402 crossrefType "other" @default.
- W4236053402 hasAuthorship W4236053402A5015860384 @default.
- W4236053402 hasAuthorship W4236053402A5046581548 @default.
- W4236053402 hasAuthorship W4236053402A5089074445 @default.
- W4236053402 hasConcept C105236789 @default.
- W4236053402 hasConcept C105923489 @default.
- W4236053402 hasConcept C121332964 @default.
- W4236053402 hasConcept C121838276 @default.
- W4236053402 hasConcept C146477669 @default.
- W4236053402 hasConcept C147368240 @default.
- W4236053402 hasConcept C147789679 @default.
- W4236053402 hasConcept C178790620 @default.
- W4236053402 hasConcept C185592680 @default.
- W4236053402 hasConcept C186491999 @default.
- W4236053402 hasConcept C195801359 @default.
- W4236053402 hasConcept C196503311 @default.
- W4236053402 hasConcept C202270520 @default.
- W4236053402 hasConcept C31555180 @default.
- W4236053402 hasConcept C3288061 @default.
- W4236053402 hasConcept C521977710 @default.
- W4236053402 hasConcept C60205243 @default.
- W4236053402 hasConcept C60778519 @default.
- W4236053402 hasConcept C78032018 @default.
- W4236053402 hasConcept C79289859 @default.
- W4236053402 hasConcept C97355855 @default.
- W4236053402 hasConceptScore W4236053402C105236789 @default.
- W4236053402 hasConceptScore W4236053402C105923489 @default.
- W4236053402 hasConceptScore W4236053402C121332964 @default.
- W4236053402 hasConceptScore W4236053402C121838276 @default.
- W4236053402 hasConceptScore W4236053402C146477669 @default.
- W4236053402 hasConceptScore W4236053402C147368240 @default.
- W4236053402 hasConceptScore W4236053402C147789679 @default.
- W4236053402 hasConceptScore W4236053402C178790620 @default.
- W4236053402 hasConceptScore W4236053402C185592680 @default.
- W4236053402 hasConceptScore W4236053402C186491999 @default.
- W4236053402 hasConceptScore W4236053402C195801359 @default.
- W4236053402 hasConceptScore W4236053402C196503311 @default.
- W4236053402 hasConceptScore W4236053402C202270520 @default.
- W4236053402 hasConceptScore W4236053402C31555180 @default.
- W4236053402 hasConceptScore W4236053402C3288061 @default.
- W4236053402 hasConceptScore W4236053402C521977710 @default.
- W4236053402 hasConceptScore W4236053402C60205243 @default.
- W4236053402 hasConceptScore W4236053402C60778519 @default.
- W4236053402 hasConceptScore W4236053402C78032018 @default.
- W4236053402 hasConceptScore W4236053402C79289859 @default.
- W4236053402 hasConceptScore W4236053402C97355855 @default.
- W4236053402 hasLocation W42360534021 @default.
- W4236053402 hasOpenAccess W4236053402 @default.
- W4236053402 hasPrimaryLocation W42360534021 @default.
- W4236053402 hasRelatedWork W2006363625 @default.
- W4236053402 hasRelatedWork W2047812148 @default.
- W4236053402 hasRelatedWork W2151027983 @default.
- W4236053402 hasRelatedWork W2332258204 @default.
- W4236053402 hasRelatedWork W2386285247 @default.
- W4236053402 hasRelatedWork W3023541488 @default.