Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236087012> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4236087012 abstract "© 2019 Association for Computing Machinery. Many evolutionary computation (EC) methods have been used to solve feature selection problems and they perform well on most small-scale feature selection problems. However, as the dimensionality of feature selection problems increases, the solution space increases exponentially. Meanwhile, there are more irrelevant features than relevant features in datasets, which leads to many local optima in the huge solution space. Therefore, the existing EC methods still suffer from the problem of stagnation in local optima on large-scale feature selection problems. Furthermore, large-scale feature selection problems with different datasets may have different properties. Thus, it may be of low performance to solve different large-scale feature selection problems with an existing EC method that has only one candidate solution generation strategy (CSGS). In addition, it is time-consuming to fnd a suitable EC method and corresponding suitable parameter values for a given largescale feature selection problem if we want to solve it effectively and efciently. In this article, we propose a self-adaptive particle swarm optimization (SaPSO) algorithm for feature selection, particularly for largescale feature selection. First, an encoding scheme for the feature selection problem is employed in the SaPSO. Second, three important issues related to self-adaptive algorithms are investigated. After that, the SaPSO algorithm with a typical self-adaptive mechanism is proposed. The experimental results on 12 datasets show that the solution size obtained by the SaPSO algorithm is smaller than its EC counterparts on all datasets. The SaPSO algorithm performs better than its non-EC and EC counterparts in terms of classifcation accuracy not only on most training sets but also on most test sets. Furthermore, as the dimensionality of the feature selection problem increases, the advantages of SaPSO become more prominent. This highlights that the SaPSO algorithm is suitable for solving feature selection problems, particularly large-scale feature selection problems. © Xue 2019. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in 'ACM Transactions on Knowledge Discovery from Data', https://dx.doi.org/10.1145/3340848." @default.
- W4236087012 created "2022-05-12" @default.
- W4236087012 creator A5028462748 @default.
- W4236087012 creator A5042632626 @default.
- W4236087012 creator A5077569089 @default.
- W4236087012 date "2021-03-24" @default.
- W4236087012 modified "2023-10-12" @default.
- W4236087012 title "Self-Adaptive particle swarm optimization for large-scale feature selection in classification" @default.
- W4236087012 doi "https://doi.org/10.26686/wgtn.14273615" @default.
- W4236087012 hasPublicationYear "2021" @default.
- W4236087012 type Work @default.
- W4236087012 citedByCount "0" @default.
- W4236087012 crossrefType "posted-content" @default.
- W4236087012 hasAuthorship W4236087012A5028462748 @default.
- W4236087012 hasAuthorship W4236087012A5042632626 @default.
- W4236087012 hasAuthorship W4236087012A5077569089 @default.
- W4236087012 hasBestOaLocation W42360870121 @default.
- W4236087012 hasConcept C105902424 @default.
- W4236087012 hasConcept C111030470 @default.
- W4236087012 hasConcept C11413529 @default.
- W4236087012 hasConcept C121332964 @default.
- W4236087012 hasConcept C126255220 @default.
- W4236087012 hasConcept C138885662 @default.
- W4236087012 hasConcept C141934464 @default.
- W4236087012 hasConcept C148483581 @default.
- W4236087012 hasConcept C153180895 @default.
- W4236087012 hasConcept C154945302 @default.
- W4236087012 hasConcept C2776401178 @default.
- W4236087012 hasConcept C2778755073 @default.
- W4236087012 hasConcept C33923547 @default.
- W4236087012 hasConcept C41008148 @default.
- W4236087012 hasConcept C41895202 @default.
- W4236087012 hasConcept C45374587 @default.
- W4236087012 hasConcept C62520636 @default.
- W4236087012 hasConcept C70518039 @default.
- W4236087012 hasConcept C81917197 @default.
- W4236087012 hasConcept C85617194 @default.
- W4236087012 hasConceptScore W4236087012C105902424 @default.
- W4236087012 hasConceptScore W4236087012C111030470 @default.
- W4236087012 hasConceptScore W4236087012C11413529 @default.
- W4236087012 hasConceptScore W4236087012C121332964 @default.
- W4236087012 hasConceptScore W4236087012C126255220 @default.
- W4236087012 hasConceptScore W4236087012C138885662 @default.
- W4236087012 hasConceptScore W4236087012C141934464 @default.
- W4236087012 hasConceptScore W4236087012C148483581 @default.
- W4236087012 hasConceptScore W4236087012C153180895 @default.
- W4236087012 hasConceptScore W4236087012C154945302 @default.
- W4236087012 hasConceptScore W4236087012C2776401178 @default.
- W4236087012 hasConceptScore W4236087012C2778755073 @default.
- W4236087012 hasConceptScore W4236087012C33923547 @default.
- W4236087012 hasConceptScore W4236087012C41008148 @default.
- W4236087012 hasConceptScore W4236087012C41895202 @default.
- W4236087012 hasConceptScore W4236087012C45374587 @default.
- W4236087012 hasConceptScore W4236087012C62520636 @default.
- W4236087012 hasConceptScore W4236087012C70518039 @default.
- W4236087012 hasConceptScore W4236087012C81917197 @default.
- W4236087012 hasConceptScore W4236087012C85617194 @default.
- W4236087012 hasLocation W42360870121 @default.
- W4236087012 hasLocation W42360870122 @default.
- W4236087012 hasOpenAccess W4236087012 @default.
- W4236087012 hasPrimaryLocation W42360870121 @default.
- W4236087012 hasRelatedWork W1965771882 @default.
- W4236087012 hasRelatedWork W2108104958 @default.
- W4236087012 hasRelatedWork W2145967578 @default.
- W4236087012 hasRelatedWork W2156248978 @default.
- W4236087012 hasRelatedWork W2347213675 @default.
- W4236087012 hasRelatedWork W2385233088 @default.
- W4236087012 hasRelatedWork W2883447302 @default.
- W4236087012 hasRelatedWork W2895481544 @default.
- W4236087012 hasRelatedWork W2982678480 @default.
- W4236087012 hasRelatedWork W3211035526 @default.
- W4236087012 isParatext "false" @default.
- W4236087012 isRetracted "false" @default.
- W4236087012 workType "article" @default.