Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236324384> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4236324384 abstract "One of the main points of Chapter 4 is that nonlinear moving-average (NMAX) models are both inherently better-behaved and easier to analyze than more general NARMAX models. For example, it was shown in Sec. 4.2.2 that if ɡ(· · ·) is a continuous map from Rq+1 to R1 and if ys = ɡ (us,..., us), then uk → us implies yk → ys. Although it is not always satisfied, continuity is a relatively weak condition to impose on the map ɡ(· · ·) . For example, Hammerstein or Wiener models based on moving average models and the hard saturation nonlinearity represent discontinuous members of the class of NMAX models. This chapter considers the analytical consequences of requiring ɡ(·) to be analytic, implying the existence of a Taylor series expansion. Although this requirement is much stronger than continuity, it often holds, and when it does, it leads to an explicit representation: Volterra models. The principal objective of this chapter is to define the class of Volterra models and discuss various important special cases and qualitative results. Most of this discussion is concerned with the class V(N,M) of finite Volterra models, which includes the class of linear finite impulse response models as a special case, along with a number of practically important nonlinear moving average model classes. In particular, the finite Volterra model class includes Hammerstein models, Wiener models, and Uryson models, along with other more general model structures. In addition, one of the results established in this chapter is that most of the bilinear models discussed in Chapter 3 may be expressed as infinite-order Volterra models. This result is somewhat analogous to the equivalence between finite-dimensional linear autoregressive models and infinite-dimensional linear moving average models discussed in Chapter 2. The bilinear model result presented here is strictly weaker, however, since there exist classes of bilinear models that do not possess Volterra series representations. Specifically, it is shown in Sec. 5.6 that completely bilinear models do not exhibit Volterra series representations. Conversely, one of the results discussed at the end of this chapter is that the class of discrete-time fading memory systems may be approximated arbitrarily well by finite Volterra models (Boyd and Chua, 1985)." @default.
- W4236324384 created "2022-05-12" @default.
- W4236324384 creator A5015068464 @default.
- W4236324384 date "1999-12-16" @default.
- W4236324384 modified "2023-09-26" @default.
- W4236324384 title "Volterra Models" @default.
- W4236324384 doi "https://doi.org/10.1093/oso/9780195121988.003.0007" @default.
- W4236324384 hasPublicationYear "1999" @default.
- W4236324384 type Work @default.
- W4236324384 citedByCount "0" @default.
- W4236324384 crossrefType "book-chapter" @default.
- W4236324384 hasAuthorship W4236324384A5015068464 @default.
- W4236324384 hasConcept C105795698 @default.
- W4236324384 hasConcept C121332964 @default.
- W4236324384 hasConcept C134306372 @default.
- W4236324384 hasConcept C154945302 @default.
- W4236324384 hasConcept C158622935 @default.
- W4236324384 hasConcept C17744445 @default.
- W4236324384 hasConcept C199539241 @default.
- W4236324384 hasConcept C205203396 @default.
- W4236324384 hasConcept C2776359362 @default.
- W4236324384 hasConcept C2777212361 @default.
- W4236324384 hasConcept C2778532037 @default.
- W4236324384 hasConcept C28826006 @default.
- W4236324384 hasConcept C33923547 @default.
- W4236324384 hasConcept C41008148 @default.
- W4236324384 hasConcept C62520636 @default.
- W4236324384 hasConcept C72279823 @default.
- W4236324384 hasConcept C94625758 @default.
- W4236324384 hasConceptScore W4236324384C105795698 @default.
- W4236324384 hasConceptScore W4236324384C121332964 @default.
- W4236324384 hasConceptScore W4236324384C134306372 @default.
- W4236324384 hasConceptScore W4236324384C154945302 @default.
- W4236324384 hasConceptScore W4236324384C158622935 @default.
- W4236324384 hasConceptScore W4236324384C17744445 @default.
- W4236324384 hasConceptScore W4236324384C199539241 @default.
- W4236324384 hasConceptScore W4236324384C205203396 @default.
- W4236324384 hasConceptScore W4236324384C2776359362 @default.
- W4236324384 hasConceptScore W4236324384C2777212361 @default.
- W4236324384 hasConceptScore W4236324384C2778532037 @default.
- W4236324384 hasConceptScore W4236324384C28826006 @default.
- W4236324384 hasConceptScore W4236324384C33923547 @default.
- W4236324384 hasConceptScore W4236324384C41008148 @default.
- W4236324384 hasConceptScore W4236324384C62520636 @default.
- W4236324384 hasConceptScore W4236324384C72279823 @default.
- W4236324384 hasConceptScore W4236324384C94625758 @default.
- W4236324384 hasLocation W42363243841 @default.
- W4236324384 hasOpenAccess W4236324384 @default.
- W4236324384 hasPrimaryLocation W42363243841 @default.
- W4236324384 hasRelatedWork W10408513 @default.
- W4236324384 hasRelatedWork W15823104 @default.
- W4236324384 hasRelatedWork W19035973 @default.
- W4236324384 hasRelatedWork W21864792 @default.
- W4236324384 hasRelatedWork W28157120 @default.
- W4236324384 hasRelatedWork W28524019 @default.
- W4236324384 hasRelatedWork W29828344 @default.
- W4236324384 hasRelatedWork W34780642 @default.
- W4236324384 hasRelatedWork W6884486 @default.
- W4236324384 hasRelatedWork W5495521 @default.
- W4236324384 isParatext "false" @default.
- W4236324384 isRetracted "false" @default.
- W4236324384 workType "book-chapter" @default.