Matches in SemOpenAlex for { <https://semopenalex.org/work/W4236521> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4236521 endingPage "108" @default.
- W4236521 startingPage "84" @default.
- W4236521 abstract "This chapter presents the theory of recurrence relations. The tower of Hanoi puzzle, for example, involved the recurrence relation S n+1 = 2 S n + 1. In this situation, the recurrence relation related the minimum number of moves required to transfer a tower of n + 1 rings in the puzzle to the minimum number of moves required to transfer a tower of n rings. The chapter also presents the difference methods. It present the introduction of some of the basic definitions and ideas of the subject called finite differences, and indicate how these ideas may be used to solve recurrence relations. The chapter presents the problem of finding the chromatic polynomial of a map or of its corresponding graph. The empty graph with n vertices is defined to be the graph with n vertices and no edges. The complete graph on n vertices is defined to be the graph on n vertices in which each pair of vertices is joined by an edge. A graph G is connected if there is a path joining every pair of distinct vertices in G ." @default.
- W4236521 created "2016-06-24" @default.
- W4236521 creator A5050346063 @default.
- W4236521 creator A5057776910 @default.
- W4236521 date "1972-01-01" @default.
- W4236521 modified "2023-09-25" @default.
- W4236521 title "Recurrence Relations" @default.
- W4236521 doi "https://doi.org/10.1016/b978-0-12-092750-0.50010-7" @default.
- W4236521 hasPublicationYear "1972" @default.
- W4236521 type Work @default.
- W4236521 sameAs 4236521 @default.
- W4236521 citedByCount "0" @default.
- W4236521 crossrefType "book-chapter" @default.
- W4236521 hasAuthorship W4236521A5050346063 @default.
- W4236521 hasAuthorship W4236521A5057776910 @default.
- W4236521 hasConcept C114614502 @default.
- W4236521 hasConcept C118615104 @default.
- W4236521 hasConcept C128067373 @default.
- W4236521 hasConcept C132525143 @default.
- W4236521 hasConcept C148364342 @default.
- W4236521 hasConcept C149530733 @default.
- W4236521 hasConcept C201292218 @default.
- W4236521 hasConcept C203776342 @default.
- W4236521 hasConcept C33923547 @default.
- W4236521 hasConceptScore W4236521C114614502 @default.
- W4236521 hasConceptScore W4236521C118615104 @default.
- W4236521 hasConceptScore W4236521C128067373 @default.
- W4236521 hasConceptScore W4236521C132525143 @default.
- W4236521 hasConceptScore W4236521C148364342 @default.
- W4236521 hasConceptScore W4236521C149530733 @default.
- W4236521 hasConceptScore W4236521C201292218 @default.
- W4236521 hasConceptScore W4236521C203776342 @default.
- W4236521 hasConceptScore W4236521C33923547 @default.
- W4236521 hasLocation W42365211 @default.
- W4236521 hasOpenAccess W4236521 @default.
- W4236521 hasPrimaryLocation W42365211 @default.
- W4236521 hasRelatedWork W1496436768 @default.
- W4236521 hasRelatedWork W1518473637 @default.
- W4236521 hasRelatedWork W1532259493 @default.
- W4236521 hasRelatedWork W2019461764 @default.
- W4236521 hasRelatedWork W2069626737 @default.
- W4236521 hasRelatedWork W2102488782 @default.
- W4236521 hasRelatedWork W2126134935 @default.
- W4236521 hasRelatedWork W2142636032 @default.
- W4236521 hasRelatedWork W2276107497 @default.
- W4236521 hasRelatedWork W2317309498 @default.
- W4236521 hasRelatedWork W2483136700 @default.
- W4236521 hasRelatedWork W2809990751 @default.
- W4236521 hasRelatedWork W2904807449 @default.
- W4236521 hasRelatedWork W3022348726 @default.
- W4236521 hasRelatedWork W3203414618 @default.
- W4236521 hasRelatedWork W569854425 @default.
- W4236521 hasRelatedWork W87798206 @default.
- W4236521 hasRelatedWork W89666196 @default.
- W4236521 hasRelatedWork W2165623048 @default.
- W4236521 hasRelatedWork W2739609648 @default.
- W4236521 isParatext "false" @default.
- W4236521 isRetracted "false" @default.
- W4236521 magId "4236521" @default.
- W4236521 workType "book-chapter" @default.