Matches in SemOpenAlex for { <https://semopenalex.org/work/W4237404170> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4237404170 abstract "Abstract Background Electrocardiogram (ECG) signal, an important indicator for heart problems, is commonly corrupted by a low-frequency baseline wander (BW) artifact, which may cause interpretation difficulty or inaccurate analysis. Unlike current state-of-the-art approach using band-pass filters, wavelet transforms can accurately capture both time and frequency information of a signal. However, extant literature is limited in applying wavelet transforms (WTs) for baseline wander removal. In this study, we aimed to evaluate 5 wavelet families with a total of 14 wavelets for removing ECG baseline wanders from a semi-synthetic dataset. Methods We created a semi-synthetic ECG dataset based on a public QT Database on Physionet repository with ECG data from 105 patients. The semi-synthetic ECG dataset comprised ECG excerpts from the QT database superimposed with artificial baseline wanders. We extracted one ECG excerpt from each of 105 patients, and the ECG excerpt comprised 14 seconds of randomly selected ECG data. 12 baseline wanders were manually generated, including sinusoidal waves, spikes and step functions. We implemented and evaluated 14 commonly used wavelets up to 12 WT levels. The evaluation metric was mean-square-error (MSE) between the original ECG excerpt and the processed signal with artificial BW removed. Results Among the 14 wavelets, Daubechies-3 wavelet and Symlets-3 wavelet with 7 levels of WT had best performance, MSE=0.0044. The average MSEs for sinusoidal waves, step, and spike functions were 0.0271, 0.0304, 0.0199 respectively. For artificial baseline wanders with spikes or step functions, wavelet transforms in general had lower performance in removing the BW; however, WTs accurately located the temporal position of an impulse edge. Conclusions We found wavelet transforms in general accurately removed various baseline wanders. Daubechies-3 and Symlets-3 wavelets performed best. The study could facilitate future real-time processing of streaming ECG signals for clinical decision support systems." @default.
- W4237404170 created "2022-05-12" @default.
- W4237404170 creator A5010029035 @default.
- W4237404170 creator A5011685742 @default.
- W4237404170 date "2020-07-29" @default.
- W4237404170 modified "2023-10-17" @default.
- W4237404170 title "Comparing Different Wavelet Transforms on Removing Electrocardiogram Baseline Wanders and Special Trends" @default.
- W4237404170 doi "https://doi.org/10.21203/rs.3.rs-44930/v1" @default.
- W4237404170 hasPublicationYear "2020" @default.
- W4237404170 type Work @default.
- W4237404170 citedByCount "0" @default.
- W4237404170 crossrefType "posted-content" @default.
- W4237404170 hasAuthorship W4237404170A5010029035 @default.
- W4237404170 hasAuthorship W4237404170A5011685742 @default.
- W4237404170 hasBestOaLocation W42374041701 @default.
- W4237404170 hasConcept C105795698 @default.
- W4237404170 hasConcept C12725497 @default.
- W4237404170 hasConcept C153180895 @default.
- W4237404170 hasConcept C154945302 @default.
- W4237404170 hasConcept C17744445 @default.
- W4237404170 hasConcept C178300618 @default.
- W4237404170 hasConcept C196216189 @default.
- W4237404170 hasConcept C199360897 @default.
- W4237404170 hasConcept C199539241 @default.
- W4237404170 hasConcept C2779010991 @default.
- W4237404170 hasConcept C2779843651 @default.
- W4237404170 hasConcept C28490314 @default.
- W4237404170 hasConcept C33923547 @default.
- W4237404170 hasConcept C41008148 @default.
- W4237404170 hasConcept C47432892 @default.
- W4237404170 hasConcept C78458016 @default.
- W4237404170 hasConcept C86803240 @default.
- W4237404170 hasConceptScore W4237404170C105795698 @default.
- W4237404170 hasConceptScore W4237404170C12725497 @default.
- W4237404170 hasConceptScore W4237404170C153180895 @default.
- W4237404170 hasConceptScore W4237404170C154945302 @default.
- W4237404170 hasConceptScore W4237404170C17744445 @default.
- W4237404170 hasConceptScore W4237404170C178300618 @default.
- W4237404170 hasConceptScore W4237404170C196216189 @default.
- W4237404170 hasConceptScore W4237404170C199360897 @default.
- W4237404170 hasConceptScore W4237404170C199539241 @default.
- W4237404170 hasConceptScore W4237404170C2779010991 @default.
- W4237404170 hasConceptScore W4237404170C2779843651 @default.
- W4237404170 hasConceptScore W4237404170C28490314 @default.
- W4237404170 hasConceptScore W4237404170C33923547 @default.
- W4237404170 hasConceptScore W4237404170C41008148 @default.
- W4237404170 hasConceptScore W4237404170C47432892 @default.
- W4237404170 hasConceptScore W4237404170C78458016 @default.
- W4237404170 hasConceptScore W4237404170C86803240 @default.
- W4237404170 hasLocation W42374041701 @default.
- W4237404170 hasOpenAccess W4237404170 @default.
- W4237404170 hasPrimaryLocation W42374041701 @default.
- W4237404170 hasRelatedWork W1975826132 @default.
- W4237404170 hasRelatedWork W2087757611 @default.
- W4237404170 hasRelatedWork W2148116311 @default.
- W4237404170 hasRelatedWork W2160869929 @default.
- W4237404170 hasRelatedWork W2167344740 @default.
- W4237404170 hasRelatedWork W2369613622 @default.
- W4237404170 hasRelatedWork W2392981989 @default.
- W4237404170 hasRelatedWork W2538303451 @default.
- W4237404170 hasRelatedWork W2541950815 @default.
- W4237404170 hasRelatedWork W4237404170 @default.
- W4237404170 isParatext "false" @default.
- W4237404170 isRetracted "false" @default.
- W4237404170 workType "article" @default.