Matches in SemOpenAlex for { <https://semopenalex.org/work/W4237629461> ?p ?o ?g. }
- W4237629461 endingPage "68" @default.
- W4237629461 startingPage "1" @default.
- W4237629461 abstract "The authors present a general discussion of spherical, nonrelativistic blastwaves in an astrophysical context. A variety of effects has been included: expansion of the ambient medium, gravitation, and an embedded fluid of clouds capable of exchanging mass, energy, or momentum with the medium. The authors also consider cases of energy injection due either to a central source or to detonations. Cosmological solutions are extensively treated. Most attention is devoted to problems in which it is permissible to assume self-similarity, as in the prototype Sedov-Taylor blastwave. A general virial theorem for blastwaves is derived. For self-similar blastwaves, the radius varies as a power of the time, ${R}_{s}ensuremath{propto}{t}^{ensuremath{eta}}$. The integral properties of the solution are completely specified by two dimensionless numbers measuring the relative importance of thermal and kinetic energy. The authors find certain exact kinematical relations and a variety of analytic approximations to determine these numbers with varying degrees of accuracy. The approximations may be based on assumptions about the internal density distributions (e.g., shell-like), pressure distribution, or velocity distribution. In many cases exact conditions from, for example, boundary conditions or other constraints may be used to determine unspecified parameters. One new set of exact integral constraints has been derived. The various approximation schemes are tested with known solutions. The authors find that for blastwaves in which the flow extends to the origin, the assumption that the internal velocity is linear with radius is reasonably accurate. For blastwaves in which an interior vacuum develops, the equally simple approximation of constant interior velocity is accurate. These lowest-order approximations are shown to give numerical coefficients in the relation $R=mathrm{const}ifmmodetimeselsetexttimesfi{}{t}^{ensuremath{eta}}$ which are accurate to about 1-2%. The higher-order approximations show an accuracy that in some cases equals that obtained, to date, by direct numerical integration. In addition to the new methods presented, the authors have obtained new results for evaporative blastwaves, impeded blastwaves, blastwaves with cloud crushing, bubbles, cosmological blastwaves (self-similar and non-self-similar, radiative and nonradiative), blastwaves in a wind, and detonations. Some of the new results found are exact. Included are the radiative, cosmological self-similar solution, appropriate to the universe ($z>10$) when inverse Compton cooling is efficient [$mathrm{ln}R=mathrm{const}+frac{(mathrm{ln}t)(15+sqrt{17})}{24}$], and certain properties of the solutions mentioned above. In a series of appendixes several related issues are treated: energy conservation for multicomponent fluid in an expanding universe; central and edge derivatives of physical quantities in self-similar adiabatic blastwaves; shock jump conditions including energy input (detonations), and a variety of other matters." @default.
- W4237629461 created "2022-05-12" @default.
- W4237629461 creator A5045925716 @default.
- W4237629461 creator A5050357373 @default.
- W4237629461 date "1988-01-01" @default.
- W4237629461 modified "2023-09-26" @default.
- W4237629461 title "Astrophysical blastwaves" @default.
- W4237629461 cites W1971043059 @default.
- W4237629461 cites W1972018118 @default.
- W4237629461 cites W1974848915 @default.
- W4237629461 cites W1975356701 @default.
- W4237629461 cites W1975969182 @default.
- W4237629461 cites W1978222213 @default.
- W4237629461 cites W1981706522 @default.
- W4237629461 cites W1981722972 @default.
- W4237629461 cites W1988440864 @default.
- W4237629461 cites W1988656846 @default.
- W4237629461 cites W1989756559 @default.
- W4237629461 cites W1994607473 @default.
- W4237629461 cites W1996465160 @default.
- W4237629461 cites W2004192451 @default.
- W4237629461 cites W2004203489 @default.
- W4237629461 cites W2005999958 @default.
- W4237629461 cites W2006565254 @default.
- W4237629461 cites W2007901886 @default.
- W4237629461 cites W2008170660 @default.
- W4237629461 cites W2009042283 @default.
- W4237629461 cites W2009802717 @default.
- W4237629461 cites W2011634292 @default.
- W4237629461 cites W2013285588 @default.
- W4237629461 cites W2014463822 @default.
- W4237629461 cites W2016164948 @default.
- W4237629461 cites W2017625915 @default.
- W4237629461 cites W2019532200 @default.
- W4237629461 cites W2019944831 @default.
- W4237629461 cites W2020626534 @default.
- W4237629461 cites W2023043617 @default.
- W4237629461 cites W2023993259 @default.
- W4237629461 cites W2024623871 @default.
- W4237629461 cites W2033735908 @default.
- W4237629461 cites W2035110056 @default.
- W4237629461 cites W2045313772 @default.
- W4237629461 cites W2047476877 @default.
- W4237629461 cites W2047829262 @default.
- W4237629461 cites W2050276909 @default.
- W4237629461 cites W2051219595 @default.
- W4237629461 cites W2053318695 @default.
- W4237629461 cites W2053676884 @default.
- W4237629461 cites W2054018001 @default.
- W4237629461 cites W2054712018 @default.
- W4237629461 cites W2054876144 @default.
- W4237629461 cites W2056147428 @default.
- W4237629461 cites W2057960668 @default.
- W4237629461 cites W2059317918 @default.
- W4237629461 cites W2065746753 @default.
- W4237629461 cites W2067921388 @default.
- W4237629461 cites W2069414247 @default.
- W4237629461 cites W2071461803 @default.
- W4237629461 cites W2074416569 @default.
- W4237629461 cites W2077217166 @default.
- W4237629461 cites W2080324846 @default.
- W4237629461 cites W2081210194 @default.
- W4237629461 cites W2081333679 @default.
- W4237629461 cites W2082092783 @default.
- W4237629461 cites W2086153649 @default.
- W4237629461 cites W2088584587 @default.
- W4237629461 cites W2088963284 @default.
- W4237629461 cites W2089390834 @default.
- W4237629461 cites W2091048361 @default.
- W4237629461 cites W2092458492 @default.
- W4237629461 cites W2093773838 @default.
- W4237629461 cites W2093807875 @default.
- W4237629461 cites W2094761928 @default.
- W4237629461 cites W2107211694 @default.
- W4237629461 cites W2123813811 @default.
- W4237629461 cites W2123957246 @default.
- W4237629461 cites W2156854976 @default.
- W4237629461 cites W4231056218 @default.
- W4237629461 cites W4237913875 @default.
- W4237629461 cites W4243062816 @default.
- W4237629461 doi "https://doi.org/10.1103/revmodphys.60.1" @default.
- W4237629461 hasPublicationYear "1988" @default.
- W4237629461 type Work @default.
- W4237629461 citedByCount "332" @default.
- W4237629461 countsByYear W42376294612012 @default.
- W4237629461 countsByYear W42376294612013 @default.
- W4237629461 countsByYear W42376294612014 @default.
- W4237629461 countsByYear W42376294612015 @default.
- W4237629461 countsByYear W42376294612016 @default.
- W4237629461 countsByYear W42376294612017 @default.
- W4237629461 countsByYear W42376294612018 @default.
- W4237629461 countsByYear W42376294612019 @default.
- W4237629461 countsByYear W42376294612020 @default.
- W4237629461 countsByYear W42376294612021 @default.
- W4237629461 countsByYear W42376294612022 @default.
- W4237629461 countsByYear W42376294612023 @default.
- W4237629461 crossrefType "journal-article" @default.
- W4237629461 hasAuthorship W4237629461A5045925716 @default.