Matches in SemOpenAlex for { <https://semopenalex.org/work/W4237762010> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4237762010 abstract "The foremost illustrative task in data mining process is clustering. It plays an exceedingly important role in the entire KDD process also as categorizing data is one of the most rudimentary steps in knowledge discovery. It is an unsupervised learning task used for exploratory data analysis to find some unrevealed patterns which are present in data but cannot be categorized clearly. Sets of data can be designated or grouped together based on some common characteristics and termed clusters, the mechanism involved in cluster analysis are essentially dependent upon the primary task of keeping objects with in a cluster more closer than objects belonging to other groups or clusters. Depending on the data and expected cluster characteristics there are different types of clustering paradigms. In the very recent times many new algorithms have emerged which aim towards bridging the different approaches towards clustering and merging different clustering algorithms given the requirement of handling sequential, extensive data with multiple relationships in many applications across a broad spectrum. Various clustering algorithms have been developed under different paradigms for grouping scattered data points and forming efficient cluster shapes with minimal outliers. This paper attempts to address the problem of creating evenly shaped clusters in detail and aims to study, review and analyze few clustering algorithms falling under different categories of clustering paradigms and presents a detailed comparison of their efficiency, advantages and disadvantages on some common grounds. This study also contributes in correlating some very important characteristics of an efficient clustering algorithm." @default.
- W4237762010 created "2022-05-12" @default.
- W4237762010 creator A5005321673 @default.
- W4237762010 creator A5056689859 @default.
- W4237762010 date "2017-09-01" @default.
- W4237762010 modified "2023-10-17" @default.
- W4237762010 title "A detailed study of clustering algorithms" @default.
- W4237762010 cites W2007364060 @default.
- W4237762010 cites W2067200401 @default.
- W4237762010 cites W2072910652 @default.
- W4237762010 cites W2099581008 @default.
- W4237762010 cites W2131687179 @default.
- W4237762010 cites W2141585940 @default.
- W4237762010 cites W2153233077 @default.
- W4237762010 cites W2160767463 @default.
- W4237762010 cites W2964165289 @default.
- W4237762010 cites W66185676 @default.
- W4237762010 doi "https://doi.org/10.1109/icrito.2017.8342454" @default.
- W4237762010 hasPublicationYear "2017" @default.
- W4237762010 type Work @default.
- W4237762010 citedByCount "11" @default.
- W4237762010 countsByYear W42377620102021 @default.
- W4237762010 countsByYear W42377620102022 @default.
- W4237762010 countsByYear W42377620102023 @default.
- W4237762010 crossrefType "proceedings-article" @default.
- W4237762010 hasAuthorship W4237762010A5005321673 @default.
- W4237762010 hasAuthorship W4237762010A5056689859 @default.
- W4237762010 hasConcept C111919701 @default.
- W4237762010 hasConcept C119857082 @default.
- W4237762010 hasConcept C120894424 @default.
- W4237762010 hasConcept C124101348 @default.
- W4237762010 hasConcept C154945302 @default.
- W4237762010 hasConcept C162324750 @default.
- W4237762010 hasConcept C164866538 @default.
- W4237762010 hasConcept C17212007 @default.
- W4237762010 hasConcept C187736073 @default.
- W4237762010 hasConcept C199360897 @default.
- W4237762010 hasConcept C22648726 @default.
- W4237762010 hasConcept C2780451532 @default.
- W4237762010 hasConcept C33704608 @default.
- W4237762010 hasConcept C41008148 @default.
- W4237762010 hasConcept C73555534 @default.
- W4237762010 hasConcept C79337645 @default.
- W4237762010 hasConcept C94641424 @default.
- W4237762010 hasConcept C98045186 @default.
- W4237762010 hasConceptScore W4237762010C111919701 @default.
- W4237762010 hasConceptScore W4237762010C119857082 @default.
- W4237762010 hasConceptScore W4237762010C120894424 @default.
- W4237762010 hasConceptScore W4237762010C124101348 @default.
- W4237762010 hasConceptScore W4237762010C154945302 @default.
- W4237762010 hasConceptScore W4237762010C162324750 @default.
- W4237762010 hasConceptScore W4237762010C164866538 @default.
- W4237762010 hasConceptScore W4237762010C17212007 @default.
- W4237762010 hasConceptScore W4237762010C187736073 @default.
- W4237762010 hasConceptScore W4237762010C199360897 @default.
- W4237762010 hasConceptScore W4237762010C22648726 @default.
- W4237762010 hasConceptScore W4237762010C2780451532 @default.
- W4237762010 hasConceptScore W4237762010C33704608 @default.
- W4237762010 hasConceptScore W4237762010C41008148 @default.
- W4237762010 hasConceptScore W4237762010C73555534 @default.
- W4237762010 hasConceptScore W4237762010C79337645 @default.
- W4237762010 hasConceptScore W4237762010C94641424 @default.
- W4237762010 hasConceptScore W4237762010C98045186 @default.
- W4237762010 hasLocation W42377620101 @default.
- W4237762010 hasOpenAccess W4237762010 @default.
- W4237762010 hasPrimaryLocation W42377620101 @default.
- W4237762010 hasRelatedWork W2165695836 @default.
- W4237762010 hasRelatedWork W2953178564 @default.
- W4237762010 hasRelatedWork W2970954390 @default.
- W4237762010 hasRelatedWork W2994698976 @default.
- W4237762010 hasRelatedWork W3168768270 @default.
- W4237762010 hasRelatedWork W4200404937 @default.
- W4237762010 hasRelatedWork W4283741549 @default.
- W4237762010 hasRelatedWork W4310575853 @default.
- W4237762010 hasRelatedWork W4313069709 @default.
- W4237762010 hasRelatedWork W1491908038 @default.
- W4237762010 isParatext "false" @default.
- W4237762010 isRetracted "false" @default.
- W4237762010 workType "article" @default.