Matches in SemOpenAlex for { <https://semopenalex.org/work/W4237796692> ?p ?o ?g. }
- W4237796692 endingPage "665" @default.
- W4237796692 startingPage "653" @default.
- W4237796692 abstract "The chapter deals with the big data in biology. The largest collection of biological data maintenance paves the way for big data analytics and big data mining due to its inefficiency in finding noisy and voluminous data from normal database management systems. This provides the domains such as bioinformatics, image informatics, clinical informatics, public health informatics, etc. for big data analytics to achieve better results with higher efficiency and accuracy in clustering, classification and association mining. The complexity measures of the health care data leads to EHR (Evidence-based HealthcaRe) technology for maintenance. EHR includes major challenges such as patient details in structured and unstructured format, medical image data mining, genome analysis and patient communications analysis through sensors – biomarkers, etc. The big biological data have many complications in their data management and maintenance especially after completing the latest genome sequencing technology, next generation sequencing which provides large data in zettabyte size." @default.
- W4237796692 created "2022-05-12" @default.
- W4237796692 creator A5014682060 @default.
- W4237796692 creator A5053635193 @default.
- W4237796692 date "2019-01-01" @default.
- W4237796692 modified "2023-09-28" @default.
- W4237796692 title "Biological Big Data Analysis and Visualization" @default.
- W4237796692 cites W1970110423 @default.
- W4237796692 cites W1972924519 @default.
- W4237796692 cites W1993655163 @default.
- W4237796692 cites W2016565712 @default.
- W4237796692 cites W2017474677 @default.
- W4237796692 cites W2049997041 @default.
- W4237796692 cites W2059019569 @default.
- W4237796692 cites W2064774118 @default.
- W4237796692 cites W2065817684 @default.
- W4237796692 cites W2082376103 @default.
- W4237796692 cites W2088612061 @default.
- W4237796692 cites W2117131162 @default.
- W4237796692 cites W2118917952 @default.
- W4237796692 cites W2119556995 @default.
- W4237796692 cites W2120772351 @default.
- W4237796692 cites W2122479165 @default.
- W4237796692 cites W2126298009 @default.
- W4237796692 cites W2127226151 @default.
- W4237796692 cites W2128664117 @default.
- W4237796692 cites W2130538915 @default.
- W4237796692 cites W2132298698 @default.
- W4237796692 cites W2136834914 @default.
- W4237796692 cites W2137779717 @default.
- W4237796692 cites W2143307936 @default.
- W4237796692 cites W2143325524 @default.
- W4237796692 cites W2143387738 @default.
- W4237796692 cites W2150308846 @default.
- W4237796692 cites W2150491437 @default.
- W4237796692 cites W2151920212 @default.
- W4237796692 cites W2152710395 @default.
- W4237796692 cites W2159603617 @default.
- W4237796692 cites W2169508919 @default.
- W4237796692 cites W2170855681 @default.
- W4237796692 cites W2239746079 @default.
- W4237796692 cites W2314734005 @default.
- W4237796692 doi "https://doi.org/10.4018/978-1-5225-8903-7.ch026" @default.
- W4237796692 hasPublicationYear "2019" @default.
- W4237796692 type Work @default.
- W4237796692 citedByCount "2" @default.
- W4237796692 countsByYear W42377966922019 @default.
- W4237796692 countsByYear W42377966922023 @default.
- W4237796692 crossrefType "book-chapter" @default.
- W4237796692 hasAuthorship W4237796692A5014682060 @default.
- W4237796692 hasAuthorship W4237796692A5053635193 @default.
- W4237796692 hasConcept C104317684 @default.
- W4237796692 hasConcept C119599485 @default.
- W4237796692 hasConcept C124101348 @default.
- W4237796692 hasConcept C127413603 @default.
- W4237796692 hasConcept C141231307 @default.
- W4237796692 hasConcept C145642194 @default.
- W4237796692 hasConcept C154945302 @default.
- W4237796692 hasConcept C160735492 @default.
- W4237796692 hasConcept C162324750 @default.
- W4237796692 hasConcept C163293594 @default.
- W4237796692 hasConcept C1668388 @default.
- W4237796692 hasConcept C175444787 @default.
- W4237796692 hasConcept C175801342 @default.
- W4237796692 hasConcept C189206191 @default.
- W4237796692 hasConcept C191630685 @default.
- W4237796692 hasConcept C2522767166 @default.
- W4237796692 hasConcept C2778869765 @default.
- W4237796692 hasConcept C36464697 @default.
- W4237796692 hasConcept C41008148 @default.
- W4237796692 hasConcept C50522688 @default.
- W4237796692 hasConcept C55493867 @default.
- W4237796692 hasConcept C73555534 @default.
- W4237796692 hasConcept C75684735 @default.
- W4237796692 hasConcept C79158427 @default.
- W4237796692 hasConcept C86803240 @default.
- W4237796692 hasConceptScore W4237796692C104317684 @default.
- W4237796692 hasConceptScore W4237796692C119599485 @default.
- W4237796692 hasConceptScore W4237796692C124101348 @default.
- W4237796692 hasConceptScore W4237796692C127413603 @default.
- W4237796692 hasConceptScore W4237796692C141231307 @default.
- W4237796692 hasConceptScore W4237796692C145642194 @default.
- W4237796692 hasConceptScore W4237796692C154945302 @default.
- W4237796692 hasConceptScore W4237796692C160735492 @default.
- W4237796692 hasConceptScore W4237796692C162324750 @default.
- W4237796692 hasConceptScore W4237796692C163293594 @default.
- W4237796692 hasConceptScore W4237796692C1668388 @default.
- W4237796692 hasConceptScore W4237796692C175444787 @default.
- W4237796692 hasConceptScore W4237796692C175801342 @default.
- W4237796692 hasConceptScore W4237796692C189206191 @default.
- W4237796692 hasConceptScore W4237796692C191630685 @default.
- W4237796692 hasConceptScore W4237796692C2522767166 @default.
- W4237796692 hasConceptScore W4237796692C2778869765 @default.
- W4237796692 hasConceptScore W4237796692C36464697 @default.
- W4237796692 hasConceptScore W4237796692C41008148 @default.
- W4237796692 hasConceptScore W4237796692C50522688 @default.
- W4237796692 hasConceptScore W4237796692C55493867 @default.
- W4237796692 hasConceptScore W4237796692C73555534 @default.