Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238034618> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4238034618 abstract "The Kalman filter requires knowledge of the noise statistics; however, the noise covariances are generally <i>unknown</i>. Although this problem has a long history, reliable algorithms for their estimation are scant, and necessary and sufficient conditions for identifiability of the covariances are in dispute. We address both of these issues in this paper. We first present the necessary and sufficient condition for unknown noise covariance estimation; these conditions are related to the rank of a matrix involving the auto and cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the the minimal polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter. We present an optimization criterion and a novel six-step approach based on a successive approximation, coupled with a gradient algorithm with adaptive step sizes, to estimate the steady-state Kalman filter gain, the unknown noise covariance matrices, as well as the state prediction (and updated) error covariance matrix. Our approach enforces the structural assumptions on unknown noise covariances and ensures symmetry and positive definiteness of the estimated covariance matrices. We provide several approaches to estimate the unknown measurement noise covariance <i>R </i>via <i>post-fit residuals</i>, an approach not yet exploited in the literature. The validation of the proposed method on five different test cases from the literature demonstrates that the proposed method significantly outperforms previous state-of-the-art methods. It also offers a number of novel machine learning motivated approaches, such as sequential (one sample at a time) and mini-batch-based methods, to speed up the computations." @default.
- W4238034618 created "2022-05-12" @default.
- W4238034618 creator A5032483735 @default.
- W4238034618 creator A5040568535 @default.
- W4238034618 creator A5044127482 @default.
- W4238034618 creator A5060232574 @default.
- W4238034618 creator A5072354292 @default.
- W4238034618 creator A5082001657 @default.
- W4238034618 date "2020-01-22" @default.
- W4238034618 modified "2023-09-26" @default.
- W4238034618 title "On the Identification of Noise Covariances and Adaptive Kalman Filtering: A New Look at a 50 Year-old Problem" @default.
- W4238034618 doi "https://doi.org/10.36227/techrxiv.11663871.v2" @default.
- W4238034618 hasPublicationYear "2020" @default.
- W4238034618 type Work @default.
- W4238034618 citedByCount "0" @default.
- W4238034618 crossrefType "posted-content" @default.
- W4238034618 hasAuthorship W4238034618A5032483735 @default.
- W4238034618 hasAuthorship W4238034618A5040568535 @default.
- W4238034618 hasAuthorship W4238034618A5044127482 @default.
- W4238034618 hasAuthorship W4238034618A5060232574 @default.
- W4238034618 hasAuthorship W4238034618A5072354292 @default.
- W4238034618 hasAuthorship W4238034618A5082001657 @default.
- W4238034618 hasBestOaLocation W42380346182 @default.
- W4238034618 hasConcept C105795698 @default.
- W4238034618 hasConcept C11413529 @default.
- W4238034618 hasConcept C114614502 @default.
- W4238034618 hasConcept C115961682 @default.
- W4238034618 hasConcept C122770356 @default.
- W4238034618 hasConcept C150679823 @default.
- W4238034618 hasConcept C154945302 @default.
- W4238034618 hasConcept C157286648 @default.
- W4238034618 hasConcept C164226766 @default.
- W4238034618 hasConcept C178650346 @default.
- W4238034618 hasConcept C180877172 @default.
- W4238034618 hasConcept C185142706 @default.
- W4238034618 hasConcept C206833254 @default.
- W4238034618 hasConcept C2775924081 @default.
- W4238034618 hasConcept C33923547 @default.
- W4238034618 hasConcept C41008148 @default.
- W4238034618 hasConcept C47446073 @default.
- W4238034618 hasConcept C83042196 @default.
- W4238034618 hasConcept C8639503 @default.
- W4238034618 hasConcept C99498987 @default.
- W4238034618 hasConceptScore W4238034618C105795698 @default.
- W4238034618 hasConceptScore W4238034618C11413529 @default.
- W4238034618 hasConceptScore W4238034618C114614502 @default.
- W4238034618 hasConceptScore W4238034618C115961682 @default.
- W4238034618 hasConceptScore W4238034618C122770356 @default.
- W4238034618 hasConceptScore W4238034618C150679823 @default.
- W4238034618 hasConceptScore W4238034618C154945302 @default.
- W4238034618 hasConceptScore W4238034618C157286648 @default.
- W4238034618 hasConceptScore W4238034618C164226766 @default.
- W4238034618 hasConceptScore W4238034618C178650346 @default.
- W4238034618 hasConceptScore W4238034618C180877172 @default.
- W4238034618 hasConceptScore W4238034618C185142706 @default.
- W4238034618 hasConceptScore W4238034618C206833254 @default.
- W4238034618 hasConceptScore W4238034618C2775924081 @default.
- W4238034618 hasConceptScore W4238034618C33923547 @default.
- W4238034618 hasConceptScore W4238034618C41008148 @default.
- W4238034618 hasConceptScore W4238034618C47446073 @default.
- W4238034618 hasConceptScore W4238034618C83042196 @default.
- W4238034618 hasConceptScore W4238034618C8639503 @default.
- W4238034618 hasConceptScore W4238034618C99498987 @default.
- W4238034618 hasLocation W42380346181 @default.
- W4238034618 hasLocation W42380346182 @default.
- W4238034618 hasOpenAccess W4238034618 @default.
- W4238034618 hasPrimaryLocation W42380346181 @default.
- W4238034618 hasRelatedWork W12640612 @default.
- W4238034618 hasRelatedWork W3293076 @default.
- W4238034618 hasRelatedWork W4757571 @default.
- W4238034618 hasRelatedWork W5165779 @default.
- W4238034618 hasRelatedWork W6232081 @default.
- W4238034618 hasRelatedWork W6292881 @default.
- W4238034618 hasRelatedWork W6558424 @default.
- W4238034618 hasRelatedWork W9054458 @default.
- W4238034618 hasRelatedWork W9574853 @default.
- W4238034618 hasRelatedWork W4710051 @default.
- W4238034618 isParatext "false" @default.
- W4238034618 isRetracted "false" @default.
- W4238034618 workType "article" @default.