Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238044559> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4238044559 abstract "We compare the diameter of a graph with the directed diameter of its Eulerian orientations. We obtain positive results under certain symmetry conditions.An Eulerian orientation of a graph is an orientation such that each vertex has the same indegree and outdegree. A graph is vertex-transitive if its vertices are equivalent under automorphisms.We show that the directed diameter of an Eulerian orientation of a finite vertex-transitive graph cannot be much larger than the undirected diameter; our bound on the directed diameter is O (dΔ ln n) where d is the undirected diameter, Δ is the (out)degree of the vertices, and n is the number of vertices. This implies that for Eulerian orientations of vertex-transitive graphs-of bounded degree, the gap between the two diameters is at most quadratic.As a consequence, we are able to compare the word length and the positive word length of elements of a finite group in terms of a given set of generators; we show that the gap is at most nearly quadratic, where the term nearly refers to a factor, polylogarithmic in the order of the group.It follows that recent polynomial bounds on the diameter of certain large classes of Cayley graphs of the symmetric group and certain linear groups automatically extend to directed Cayley graphs. The result also shows that the directed and undirected versions of long standing conjectures regarding the diameter of Cayley graphs of various classes of groups, including transitive permutation groups and finite simple groups, are equivalent.We also show that for edge-transitive digraphs, the directed diameter is O(d ln n).On the other hand, if we weaken the condition of vertex-transitivity to regularity (all vertices have the same degree), then the directed diameter is no longer polynomially bounded in terms of the undirected diameter and the maximum degree (and In n = O(d ln Δ)).Our upper bounds on the diameter raise the algorithmic challenge to find paths of the length guaranteed by these results. While for undirected graphs, most (but not all) relevant proofs are algorithmic, our bounds for the directed diameter are obtained via a pigeon-hole argument based on expansion and yield existence only." @default.
- W4238044559 created "2022-05-12" @default.
- W4238044559 creator A5014978503 @default.
- W4238044559 date "2006-01-01" @default.
- W4238044559 modified "2023-10-16" @default.
- W4238044559 title "On the diameter of Eulerian orientations of graphs" @default.
- W4238044559 doi "https://doi.org/10.1145/1109557.1109648" @default.
- W4238044559 hasPublicationYear "2006" @default.
- W4238044559 type Work @default.
- W4238044559 citedByCount "11" @default.
- W4238044559 countsByYear W42380445592012 @default.
- W4238044559 countsByYear W42380445592013 @default.
- W4238044559 countsByYear W42380445592014 @default.
- W4238044559 countsByYear W42380445592015 @default.
- W4238044559 countsByYear W42380445592016 @default.
- W4238044559 countsByYear W42380445592017 @default.
- W4238044559 countsByYear W42380445592019 @default.
- W4238044559 countsByYear W42380445592023 @default.
- W4238044559 crossrefType "proceedings-article" @default.
- W4238044559 hasAuthorship W4238044559A5014978503 @default.
- W4238044559 hasConcept C114614502 @default.
- W4238044559 hasConcept C118615104 @default.
- W4238044559 hasConcept C120204988 @default.
- W4238044559 hasConcept C121332964 @default.
- W4238044559 hasConcept C132525143 @default.
- W4238044559 hasConcept C16345878 @default.
- W4238044559 hasConcept C202444582 @default.
- W4238044559 hasConcept C21308566 @default.
- W4238044559 hasConcept C24890656 @default.
- W4238044559 hasConcept C2524010 @default.
- W4238044559 hasConcept C33923547 @default.
- W4238044559 hasConcept C43058520 @default.
- W4238044559 hasConcept C53469067 @default.
- W4238044559 hasConcept C80899671 @default.
- W4238044559 hasConcept C92957085 @default.
- W4238044559 hasConceptScore W4238044559C114614502 @default.
- W4238044559 hasConceptScore W4238044559C118615104 @default.
- W4238044559 hasConceptScore W4238044559C120204988 @default.
- W4238044559 hasConceptScore W4238044559C121332964 @default.
- W4238044559 hasConceptScore W4238044559C132525143 @default.
- W4238044559 hasConceptScore W4238044559C16345878 @default.
- W4238044559 hasConceptScore W4238044559C202444582 @default.
- W4238044559 hasConceptScore W4238044559C21308566 @default.
- W4238044559 hasConceptScore W4238044559C24890656 @default.
- W4238044559 hasConceptScore W4238044559C2524010 @default.
- W4238044559 hasConceptScore W4238044559C33923547 @default.
- W4238044559 hasConceptScore W4238044559C43058520 @default.
- W4238044559 hasConceptScore W4238044559C53469067 @default.
- W4238044559 hasConceptScore W4238044559C80899671 @default.
- W4238044559 hasConceptScore W4238044559C92957085 @default.
- W4238044559 hasLocation W42380445591 @default.
- W4238044559 hasOpenAccess W4238044559 @default.
- W4238044559 hasPrimaryLocation W42380445591 @default.
- W4238044559 hasRelatedWork W1719252778 @default.
- W4238044559 hasRelatedWork W1968753385 @default.
- W4238044559 hasRelatedWork W2019940421 @default.
- W4238044559 hasRelatedWork W2031098440 @default.
- W4238044559 hasRelatedWork W2142561347 @default.
- W4238044559 hasRelatedWork W3163437779 @default.
- W4238044559 hasRelatedWork W4304192740 @default.
- W4238044559 hasRelatedWork W4307385446 @default.
- W4238044559 hasRelatedWork W4386114258 @default.
- W4238044559 hasRelatedWork W922283457 @default.
- W4238044559 isParatext "false" @default.
- W4238044559 isRetracted "false" @default.
- W4238044559 workType "article" @default.