Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238087693> ?p ?o ?g. }
- W4238087693 endingPage "14528" @default.
- W4238087693 startingPage "14509" @default.
- W4238087693 abstract "Fine-grained classification and grading of breast cancer (BC) histopathological images are of great value in clinical application. However, automatic classification and grading of BC histopathological images are complicated by (1) small inter-class variance and large intra-class variance exist in BC histopathological images, and (2) features extracted from similar histopathological images with different magnification are quite different. To address these issues, an improved deep convolution neural network model is proposed and the procedure can be divided into three main stages. Firstly, in the representation learning process, multi-class recognition task and verification task of image pair are combined. Secondly, in the feature extraction process, a prior knowledge is built, which is “the variances in feature outputs between different subclasses is relatively large while the variance between the same subclass is small.” Additionally, the prior information that histopathological images with different magnification belong to the same subclass are embedded in the feature extraction process, which contributes to less sensitive with image magnification. The experimental results based on three different histopathological image datasets show that the performance of the proposed method is better than state of the art, with better robustness and generalization ability." @default.
- W4238087693 created "2022-05-12" @default.
- W4238087693 creator A5017790987 @default.
- W4238087693 creator A5028311940 @default.
- W4238087693 creator A5041152156 @default.
- W4238087693 creator A5056692940 @default.
- W4238087693 creator A5059971229 @default.
- W4238087693 creator A5063059754 @default.
- W4238087693 creator A5068323815 @default.
- W4238087693 creator A5077799191 @default.
- W4238087693 creator A5083631821 @default.
- W4238087693 date "2018-12-07" @default.
- W4238087693 modified "2023-10-16" @default.
- W4238087693 title "Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images" @default.
- W4238087693 cites W1937937026 @default.
- W4238087693 cites W2002370809 @default.
- W4238087693 cites W2021354639 @default.
- W4238087693 cites W2056499382 @default.
- W4238087693 cites W2077061503 @default.
- W4238087693 cites W2086799992 @default.
- W4238087693 cites W2097117768 @default.
- W4238087693 cites W2117510288 @default.
- W4238087693 cites W2138621090 @default.
- W4238087693 cites W2145287260 @default.
- W4238087693 cites W2157364932 @default.
- W4238087693 cites W2175543269 @default.
- W4238087693 cites W2210837254 @default.
- W4238087693 cites W2286206973 @default.
- W4238087693 cites W2310533432 @default.
- W4238087693 cites W2344480160 @default.
- W4238087693 cites W2470610394 @default.
- W4238087693 cites W2504150216 @default.
- W4238087693 cites W2512419914 @default.
- W4238087693 cites W2517407553 @default.
- W4238087693 cites W2525120061 @default.
- W4238087693 cites W2554892747 @default.
- W4238087693 cites W2556697445 @default.
- W4238087693 cites W2560920277 @default.
- W4238087693 cites W2609584387 @default.
- W4238087693 cites W2637598222 @default.
- W4238087693 cites W2716665989 @default.
- W4238087693 cites W2737813497 @default.
- W4238087693 cites W2737969950 @default.
- W4238087693 cites W2739315424 @default.
- W4238087693 cites W2750873433 @default.
- W4238087693 cites W2753233659 @default.
- W4238087693 cites W2756965661 @default.
- W4238087693 cites W2759912964 @default.
- W4238087693 cites W2765537691 @default.
- W4238087693 cites W2767302379 @default.
- W4238087693 cites W2767899110 @default.
- W4238087693 cites W2771292748 @default.
- W4238087693 cites W2919115771 @default.
- W4238087693 cites W2963845825 @default.
- W4238087693 cites W2964189431 @default.
- W4238087693 doi "https://doi.org/10.1007/s11042-018-6970-9" @default.
- W4238087693 hasPublicationYear "2018" @default.
- W4238087693 type Work @default.
- W4238087693 citedByCount "48" @default.
- W4238087693 countsByYear W42380876932019 @default.
- W4238087693 countsByYear W42380876932020 @default.
- W4238087693 countsByYear W42380876932021 @default.
- W4238087693 countsByYear W42380876932022 @default.
- W4238087693 countsByYear W42380876932023 @default.
- W4238087693 crossrefType "journal-article" @default.
- W4238087693 hasAuthorship W4238087693A5017790987 @default.
- W4238087693 hasAuthorship W4238087693A5028311940 @default.
- W4238087693 hasAuthorship W4238087693A5041152156 @default.
- W4238087693 hasAuthorship W4238087693A5056692940 @default.
- W4238087693 hasAuthorship W4238087693A5059971229 @default.
- W4238087693 hasAuthorship W4238087693A5063059754 @default.
- W4238087693 hasAuthorship W4238087693A5068323815 @default.
- W4238087693 hasAuthorship W4238087693A5077799191 @default.
- W4238087693 hasAuthorship W4238087693A5083631821 @default.
- W4238087693 hasBestOaLocation W42380876931 @default.
- W4238087693 hasConcept C104317684 @default.
- W4238087693 hasConcept C108583219 @default.
- W4238087693 hasConcept C127413603 @default.
- W4238087693 hasConcept C147176958 @default.
- W4238087693 hasConcept C153180895 @default.
- W4238087693 hasConcept C154945302 @default.
- W4238087693 hasConcept C185592680 @default.
- W4238087693 hasConcept C2777286243 @default.
- W4238087693 hasConcept C41008148 @default.
- W4238087693 hasConcept C4144372 @default.
- W4238087693 hasConcept C52622490 @default.
- W4238087693 hasConcept C55493867 @default.
- W4238087693 hasConcept C63479239 @default.
- W4238087693 hasConcept C81363708 @default.
- W4238087693 hasConceptScore W4238087693C104317684 @default.
- W4238087693 hasConceptScore W4238087693C108583219 @default.
- W4238087693 hasConceptScore W4238087693C127413603 @default.
- W4238087693 hasConceptScore W4238087693C147176958 @default.
- W4238087693 hasConceptScore W4238087693C153180895 @default.
- W4238087693 hasConceptScore W4238087693C154945302 @default.
- W4238087693 hasConceptScore W4238087693C185592680 @default.
- W4238087693 hasConceptScore W4238087693C2777286243 @default.
- W4238087693 hasConceptScore W4238087693C41008148 @default.