Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238091497> ?p ?o ?g. }
- W4238091497 abstract "Abstract. New particle formation, which greatly influences the number concentrations and size distributions of an atmospheric aerosol, is often followed by a rapid growth of freshly formed particles. The initial growth of a newly formed aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes, which have a significant influence on climate. In this study, we report the laboratory observations of the growth of nanoparticles produced by nucleation of H2SO4 and water in a laminar flow tube at temperatures of 283, 293 and 303 K, under dry (a relative humidity of 1%) and wet conditions (relative humidity of 30%) and residence times of 30, 45, 60 and 90 s. The initial H2SO4 concentration spans the range from 2 × 108 to 1.4 × 1010 molecule cm−3 and the calculated wall losses of H2SO4 were assumed to be diffusion limited. The detected particle number concentrations, measured by the Ultrafine Condensation Particle Counter (UCPC) and Differential Mobility Particle Sizer (DMPS), were found to depend strongly on the residence time. Hygroscopic particle growth, presented by growth factors, was found to be in good agreement with the previously reported studies. The experimental growth rates ranged from 20 nm h−1 to 890 nm h−1 at RH 1% and from 7 nm h−1 to 980 nm h−1 at RH 30% and were found to increase significantly with the increasing concentration of H2SO4. Increases in the nucleation temperature had a slight enhancing effect on the growth rates under dry conditions. The influence of relative humidity on growth was not consistent – at lower H2SO4 concentrations, the growth rates were higher under dry conditions while at H2SO4 concentrations greater than 1×109molecule cm−3 the growth rates were higher under wet conditions. The growth rates show only a weak dependence on the residence time. The experimental observations were compared with predictions made using a numerical model, which investigates the growth of particles with three different extents of neutralization by the ammonia NH3: (1) pure H2SO4 – H2O particles (2) particles formed by ammonium bisulphate, (NH4)HSO4 (3) particles formed by ammonium sulphate, (NH4)2SO4. The highest growth rates were found for ammonium sulphate particles. Since the model accounting for the initial H2SO4 concentration predicted the experimental growth rates correctly, our results suggest that the commonly presumed diffusional wall losses of H2SO4 are not so significant. We therefore assume that there are not only losses of H2SO4 on the wall but also a flux of H2SO4 molecules from the wall into the flow tube, the effect being more profound under dry conditions and at higher temperatures of the tube wall. Based on a comparison with the atmospheric observations, our results indicate that sulphuric acid alone can not explain the growth rates of particles formed in the atmosphere." @default.
- W4238091497 created "2022-05-12" @default.
- W4238091497 creator A5027159814 @default.
- W4238091497 creator A5027869827 @default.
- W4238091497 creator A5033575777 @default.
- W4238091497 creator A5046124112 @default.
- W4238091497 creator A5069181410 @default.
- W4238091497 date "2013-09-12" @default.
- W4238091497 modified "2023-10-18" @default.
- W4238091497 title "Growth of sulphuric acid nanoparticles under wet and dry conditions" @default.
- W4238091497 cites W1515036693 @default.
- W4238091497 cites W1544276658 @default.
- W4238091497 cites W1546521529 @default.
- W4238091497 cites W1652463958 @default.
- W4238091497 cites W1981719480 @default.
- W4238091497 cites W1981903575 @default.
- W4238091497 cites W1990566444 @default.
- W4238091497 cites W1995109133 @default.
- W4238091497 cites W1998677802 @default.
- W4238091497 cites W1999490113 @default.
- W4238091497 cites W2003723869 @default.
- W4238091497 cites W2004113166 @default.
- W4238091497 cites W2005798303 @default.
- W4238091497 cites W2008092456 @default.
- W4238091497 cites W2010464754 @default.
- W4238091497 cites W2011254556 @default.
- W4238091497 cites W2013350969 @default.
- W4238091497 cites W2013451606 @default.
- W4238091497 cites W2018111541 @default.
- W4238091497 cites W2020729558 @default.
- W4238091497 cites W2028621310 @default.
- W4238091497 cites W2030908262 @default.
- W4238091497 cites W2033943398 @default.
- W4238091497 cites W2038443870 @default.
- W4238091497 cites W2044758200 @default.
- W4238091497 cites W2051988240 @default.
- W4238091497 cites W2054502311 @default.
- W4238091497 cites W2058056833 @default.
- W4238091497 cites W2070590973 @default.
- W4238091497 cites W2073115945 @default.
- W4238091497 cites W2077383271 @default.
- W4238091497 cites W2081306247 @default.
- W4238091497 cites W2086108767 @default.
- W4238091497 cites W2087547216 @default.
- W4238091497 cites W2104588582 @default.
- W4238091497 cites W2105463749 @default.
- W4238091497 cites W2108582364 @default.
- W4238091497 cites W2108883829 @default.
- W4238091497 cites W2111570465 @default.
- W4238091497 cites W2112039919 @default.
- W4238091497 cites W2117004231 @default.
- W4238091497 cites W2117746361 @default.
- W4238091497 cites W2118656627 @default.
- W4238091497 cites W2121994682 @default.
- W4238091497 cites W2127722963 @default.
- W4238091497 cites W2127781078 @default.
- W4238091497 cites W2134922302 @default.
- W4238091497 cites W2137630955 @default.
- W4238091497 cites W2139236739 @default.
- W4238091497 cites W2142897011 @default.
- W4238091497 cites W2143722980 @default.
- W4238091497 cites W2144175567 @default.
- W4238091497 cites W2146027507 @default.
- W4238091497 cites W2146734000 @default.
- W4238091497 cites W2154706538 @default.
- W4238091497 cites W2155082834 @default.
- W4238091497 cites W2156302316 @default.
- W4238091497 cites W2159286929 @default.
- W4238091497 cites W2300060086 @default.
- W4238091497 cites W4242273777 @default.
- W4238091497 cites W4297901681 @default.
- W4238091497 doi "https://doi.org/10.5194/acpd-13-24087-2013" @default.
- W4238091497 hasPublicationYear "2013" @default.
- W4238091497 type Work @default.
- W4238091497 citedByCount "0" @default.
- W4238091497 crossrefType "posted-content" @default.
- W4238091497 hasAuthorship W4238091497A5027159814 @default.
- W4238091497 hasAuthorship W4238091497A5027869827 @default.
- W4238091497 hasAuthorship W4238091497A5033575777 @default.
- W4238091497 hasAuthorship W4238091497A5046124112 @default.
- W4238091497 hasAuthorship W4238091497A5069181410 @default.
- W4238091497 hasBestOaLocation W42380914971 @default.
- W4238091497 hasConcept C111368507 @default.
- W4238091497 hasConcept C113196181 @default.
- W4238091497 hasConcept C121332964 @default.
- W4238091497 hasConcept C127313418 @default.
- W4238091497 hasConcept C127413603 @default.
- W4238091497 hasConcept C144352136 @default.
- W4238091497 hasConcept C147789679 @default.
- W4238091497 hasConcept C153294291 @default.
- W4238091497 hasConcept C155672457 @default.
- W4238091497 hasConcept C158960510 @default.
- W4238091497 hasConcept C171250308 @default.
- W4238091497 hasConcept C178790620 @default.
- W4238091497 hasConcept C185592680 @default.
- W4238091497 hasConcept C187320778 @default.
- W4238091497 hasConcept C187530423 @default.
- W4238091497 hasConcept C192562407 @default.
- W4238091497 hasConcept C200093464 @default.
- W4238091497 hasConcept C20556612 @default.