Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238313404> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4238313404 endingPage "8" @default.
- W4238313404 startingPage "1" @default.
- W4238313404 abstract "In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a model for which change, or growth, does not proceed in some rigorously predefined fashion (e.g. according to Newton’s equations of motion) but rather in a stochastic manner which depends on a sequence of random numbers which is generated during the simulation. With a second, different sequence of random numbers the simulation will not give identical results but will yield values which agree with those obtained from the first sequence to within some ‘statistical error’. A very large number of different problems fall into this category: in percolation an empty lattice is gradually filled with particles by placing a particle on the lattice randomly with each ‘tick of the clock’. Lots of questions may then be asked about the resulting ‘clusters’ which are formed of neighboring occupied sites. Particular attention has been paid to the determination of the ‘percolation threshold’, i.e. the critical concentration of occupied sites for which an ‘infinite percolating cluster’ first appears. A percolating cluster is one which reaches from one boundary of a (macroscopic) system to the opposite one. The properties of such objects are of interest in the context of diverse physical problems such as conductivity of random mixtures, flow through porous rocks, behavior of dilute magnets, etc. Another example is diffusion limited aggregation (DLA), where a particle executes a random walk in space, taking one step at each time interval, until it encounters a ‘seed’ mass and sticks to it. The growth of this mass may then be studied as many random walkers are turned loose. The ‘fractal’ properties of the resulting object are of real interest, and while there is no accepted analytical theory of DLA to date, computer simulation is the method of choice. In fact, the phenomenon of DLA was first discovered by Monte Carlo simulation." @default.
- W4238313404 created "2022-05-12" @default.
- W4238313404 date "2021-07-29" @default.
- W4238313404 modified "2023-10-16" @default.
- W4238313404 title "Introduction" @default.
- W4238313404 doi "https://doi.org/10.1017/9781108780346.002" @default.
- W4238313404 hasPublicationYear "2021" @default.
- W4238313404 type Work @default.
- W4238313404 citedByCount "0" @default.
- W4238313404 crossrefType "book-chapter" @default.
- W4238313404 hasBestOaLocation W42383134041 @default.
- W4238313404 hasConcept C105795698 @default.
- W4238313404 hasConcept C121194460 @default.
- W4238313404 hasConcept C121332964 @default.
- W4238313404 hasConcept C121864883 @default.
- W4238313404 hasConcept C15867958 @default.
- W4238313404 hasConcept C164866538 @default.
- W4238313404 hasConcept C169760540 @default.
- W4238313404 hasConcept C185592680 @default.
- W4238313404 hasConcept C19499675 @default.
- W4238313404 hasConcept C199360897 @default.
- W4238313404 hasConcept C24890656 @default.
- W4238313404 hasConcept C2729557 @default.
- W4238313404 hasConcept C2777451387 @default.
- W4238313404 hasConcept C2778112365 @default.
- W4238313404 hasConcept C2780457167 @default.
- W4238313404 hasConcept C2781204021 @default.
- W4238313404 hasConcept C33923547 @default.
- W4238313404 hasConcept C41008148 @default.
- W4238313404 hasConcept C48406656 @default.
- W4238313404 hasConcept C55493867 @default.
- W4238313404 hasConcept C62520636 @default.
- W4238313404 hasConcept C69990965 @default.
- W4238313404 hasConcept C86803240 @default.
- W4238313404 hasConceptScore W4238313404C105795698 @default.
- W4238313404 hasConceptScore W4238313404C121194460 @default.
- W4238313404 hasConceptScore W4238313404C121332964 @default.
- W4238313404 hasConceptScore W4238313404C121864883 @default.
- W4238313404 hasConceptScore W4238313404C15867958 @default.
- W4238313404 hasConceptScore W4238313404C164866538 @default.
- W4238313404 hasConceptScore W4238313404C169760540 @default.
- W4238313404 hasConceptScore W4238313404C185592680 @default.
- W4238313404 hasConceptScore W4238313404C19499675 @default.
- W4238313404 hasConceptScore W4238313404C199360897 @default.
- W4238313404 hasConceptScore W4238313404C24890656 @default.
- W4238313404 hasConceptScore W4238313404C2729557 @default.
- W4238313404 hasConceptScore W4238313404C2777451387 @default.
- W4238313404 hasConceptScore W4238313404C2778112365 @default.
- W4238313404 hasConceptScore W4238313404C2780457167 @default.
- W4238313404 hasConceptScore W4238313404C2781204021 @default.
- W4238313404 hasConceptScore W4238313404C33923547 @default.
- W4238313404 hasConceptScore W4238313404C41008148 @default.
- W4238313404 hasConceptScore W4238313404C48406656 @default.
- W4238313404 hasConceptScore W4238313404C55493867 @default.
- W4238313404 hasConceptScore W4238313404C62520636 @default.
- W4238313404 hasConceptScore W4238313404C69990965 @default.
- W4238313404 hasConceptScore W4238313404C86803240 @default.
- W4238313404 hasLocation W42383134041 @default.
- W4238313404 hasOpenAccess W4238313404 @default.
- W4238313404 hasPrimaryLocation W42383134041 @default.
- W4238313404 hasRelatedWork W2004475824 @default.
- W4238313404 hasRelatedWork W2017603577 @default.
- W4238313404 hasRelatedWork W2020357924 @default.
- W4238313404 hasRelatedWork W2047090164 @default.
- W4238313404 hasRelatedWork W2051911256 @default.
- W4238313404 hasRelatedWork W2058652246 @default.
- W4238313404 hasRelatedWork W2072158879 @default.
- W4238313404 hasRelatedWork W2078813681 @default.
- W4238313404 hasRelatedWork W2373452521 @default.
- W4238313404 hasRelatedWork W2579508271 @default.
- W4238313404 isParatext "false" @default.
- W4238313404 isRetracted "false" @default.
- W4238313404 workType "book-chapter" @default.