Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238672677> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4238672677 abstract "<sec> <title>BACKGROUND</title> Falls are common adverse events in hospitals, frequently leading to additional health costs due to prolonged stays and extra care. Therefore, reliable fall detection is vital to develop and test fall prevention strategies. However, conventional methods—voluntary incident reports and manual chart reviews—are error-prone and time consuming, respectively. Using a search algorithm to examine patients’ electronic health record data and flag fall indicators offers an inexpensive, sensitive, cost-effective alternative. </sec> <sec> <title>OBJECTIVE</title> This study’s purpose was to develop a fall detection algorithm for use with electronic health record data, then to evaluate it alongside the Global Trigger Tool, incident reports, a manual chart review, and patient-reported falls. </sec> <sec> <title>METHODS</title> Conducted on 2 campuses of a large hospital system in Switzerland, this retrospective diagnostic accuracy study consisted of 2 substudies: the first, targeting 240 patients, for algorithm development and the second, targeting 298 patients, for validation. In the development study, we compared the new algorithm’s in-hospital fall rates with those indicated by the Global Trigger Tool and incident reports; in the validation study, we compared the algorithm’s in-hospital fall rates with those from patient-reported falls and manual chart review. We compared the various methods by calculating sensitivity, specificity, and predictive values. </sec> <sec> <title>RESULTS</title> Twenty in-hospital falls were discovered in the development study sample. Of these, the algorithm detected 19 (sensitivity 95%), the Global Trigger Tool detected 18 (90%), and incident reports detected 14 (67%). Of the 15 falls found in the validation sample, the algorithm identified all 15 (100%), the manual chart review identified 14 (93%), and the patient-reported fall measure identified 5 (33%). Owing to relatively high numbers of false positives based on falls present on admission, the algorithm’s positive predictive values were 50% (development sample) and 47% (validation sample). Instead of requiring 10 minutes per case for a full manual review or 20 minutes to apply the Global Trigger Tool, the algorithm requires only a few seconds, after which only the positive results (roughly 11% of the full case number) require review. </sec> <sec> <title>CONCLUSIONS</title> The newly developed electronic health record algorithm demonstrated very high sensitivity for fall detection. Applied in near real time, the algorithm can record in-hospital falls events effectively and help to develop and test fall prevention measures. </sec>" @default.
- W4238672677 created "2022-05-12" @default.
- W4238672677 creator A5007378017 @default.
- W4238672677 creator A5007426356 @default.
- W4238672677 creator A5017091222 @default.
- W4238672677 creator A5023981045 @default.
- W4238672677 creator A5062377882 @default.
- W4238672677 creator A5070201115 @default.
- W4238672677 creator A5073148954 @default.
- W4238672677 date "2020-04-24" @default.
- W4238672677 modified "2023-09-26" @default.
- W4238672677 title "Automated Fall Detection Algorithm With Global Trigger Tool, Incident Reports, Manual Chart Review, and Patient-Reported Falls: Algorithm Development and Validation With a Retrospective Diagnostic Accuracy Study (Preprint)" @default.
- W4238672677 cites W1586459180 @default.
- W4238672677 cites W1972049047 @default.
- W4238672677 cites W2009498029 @default.
- W4238672677 cites W2009790391 @default.
- W4238672677 cites W2017680811 @default.
- W4238672677 cites W2019750641 @default.
- W4238672677 cites W2078116468 @default.
- W4238672677 cites W2110703106 @default.
- W4238672677 cites W2111732403 @default.
- W4238672677 cites W2114175250 @default.
- W4238672677 cites W2114444713 @default.
- W4238672677 cites W2114584591 @default.
- W4238672677 cites W2122836712 @default.
- W4238672677 cites W2128955428 @default.
- W4238672677 cites W2132399121 @default.
- W4238672677 cites W2150029453 @default.
- W4238672677 cites W2158391046 @default.
- W4238672677 cites W2160788846 @default.
- W4238672677 cites W2161554615 @default.
- W4238672677 cites W2161793142 @default.
- W4238672677 cites W2166213950 @default.
- W4238672677 cites W2621970011 @default.
- W4238672677 cites W2987655467 @default.
- W4238672677 doi "https://doi.org/10.2196/preprints.19516" @default.
- W4238672677 hasPublicationYear "2020" @default.
- W4238672677 type Work @default.
- W4238672677 citedByCount "0" @default.
- W4238672677 crossrefType "posted-content" @default.
- W4238672677 hasAuthorship W4238672677A5007378017 @default.
- W4238672677 hasAuthorship W4238672677A5007426356 @default.
- W4238672677 hasAuthorship W4238672677A5017091222 @default.
- W4238672677 hasAuthorship W4238672677A5023981045 @default.
- W4238672677 hasAuthorship W4238672677A5062377882 @default.
- W4238672677 hasAuthorship W4238672677A5070201115 @default.
- W4238672677 hasAuthorship W4238672677A5073148954 @default.
- W4238672677 hasBestOaLocation W42386726772 @default.
- W4238672677 hasConcept C105795698 @default.
- W4238672677 hasConcept C11413529 @default.
- W4238672677 hasConcept C119857082 @default.
- W4238672677 hasConcept C124101348 @default.
- W4238672677 hasConcept C136764020 @default.
- W4238672677 hasConcept C160735492 @default.
- W4238672677 hasConcept C162324750 @default.
- W4238672677 hasConcept C190812933 @default.
- W4238672677 hasConcept C2909164965 @default.
- W4238672677 hasConcept C3020144179 @default.
- W4238672677 hasConcept C33923547 @default.
- W4238672677 hasConcept C38652104 @default.
- W4238672677 hasConcept C41008148 @default.
- W4238672677 hasConcept C43169469 @default.
- W4238672677 hasConcept C50522688 @default.
- W4238672677 hasConcept C545542383 @default.
- W4238672677 hasConcept C71924100 @default.
- W4238672677 hasConceptScore W4238672677C105795698 @default.
- W4238672677 hasConceptScore W4238672677C11413529 @default.
- W4238672677 hasConceptScore W4238672677C119857082 @default.
- W4238672677 hasConceptScore W4238672677C124101348 @default.
- W4238672677 hasConceptScore W4238672677C136764020 @default.
- W4238672677 hasConceptScore W4238672677C160735492 @default.
- W4238672677 hasConceptScore W4238672677C162324750 @default.
- W4238672677 hasConceptScore W4238672677C190812933 @default.
- W4238672677 hasConceptScore W4238672677C2909164965 @default.
- W4238672677 hasConceptScore W4238672677C3020144179 @default.
- W4238672677 hasConceptScore W4238672677C33923547 @default.
- W4238672677 hasConceptScore W4238672677C38652104 @default.
- W4238672677 hasConceptScore W4238672677C41008148 @default.
- W4238672677 hasConceptScore W4238672677C43169469 @default.
- W4238672677 hasConceptScore W4238672677C50522688 @default.
- W4238672677 hasConceptScore W4238672677C545542383 @default.
- W4238672677 hasConceptScore W4238672677C71924100 @default.
- W4238672677 hasLocation W42386726771 @default.
- W4238672677 hasLocation W42386726772 @default.
- W4238672677 hasOpenAccess W4238672677 @default.
- W4238672677 hasPrimaryLocation W42386726771 @default.
- W4238672677 hasRelatedWork W2187087 @default.
- W4238672677 hasRelatedWork W369254 @default.
- W4238672677 hasRelatedWork W4112098 @default.
- W4238672677 hasRelatedWork W5654639 @default.
- W4238672677 hasRelatedWork W6285965 @default.
- W4238672677 hasRelatedWork W6857101 @default.
- W4238672677 hasRelatedWork W7608368 @default.
- W4238672677 hasRelatedWork W7664633 @default.
- W4238672677 hasRelatedWork W8394581 @default.
- W4238672677 hasRelatedWork W8451425 @default.
- W4238672677 isParatext "false" @default.
- W4238672677 isRetracted "false" @default.
- W4238672677 workType "article" @default.