Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238794773> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4238794773 abstract "Checking that models adequately represent data is an essential component of applied statistical inference. Ecologists increasingly use hierarchical Bayesian statistical models in their research. The appeal of this modeling paradigm is undeniable, as researchers can build and fit models that embody complex ecological processes while simultaneously controlling observation error. However, ecologists tend to be less focused on checking model assumptions and assessing potential lack-of-fit when applying Bayesian methods than when applying more traditional modes of inference such as maximum likelihood. There are also multiple ways of assessing the fit of Bayesian models, each of which has strengths and weaknesses. For instance, Bayesian p-values are relatively easy to compute, but are well known to be conservative, producing p-values biased toward 0.5. Alternatively, lesser known approaches to model checking, such as prior predictive checks, cross-validation probability integral transforms, and pivot discrepancy measures may produce more accurate characterizations of goodness-of-fit but are not as well known to ecologists. In addition, a suite of visual and targeted diagnostics can be used to examine violations of different model assumptions and lack-of-fit at different levels of the modeling hierarchy, and to check for residual temporal or spatial autocorrelation. In this review, we synthesize existing literature to guide ecologists through the many available options for Bayesian model checking. We illustrate methods and procedures with several ecological case studies, including i) analysis of simulated spatio-temporal count data, (ii) N-mixture models for estimating abundance and detection probability of sea otters from an aircraft, and (iii) hidden Markov modeling to describe attendance patterns of California sea lion mothers on a rookery. We find that commonly used procedures based on posterior predictive p-values detect extreme model inadequacy, but often do not detect more subtle cases of lack of fit. Tests based on cross-validation and pivot discrepancy measures (including the ``sampled predictive p-value'') appear to be better suited to model checking and to have better overall statistical performance. We conclude that model checking is an essential component of scientific discovery and learning that should accompany most Bayesian analyses presented in the literature." @default.
- W4238794773 created "2022-05-12" @default.
- W4238794773 creator A5003425680 @default.
- W4238794773 creator A5007167892 @default.
- W4238794773 creator A5031913902 @default.
- W4238794773 creator A5082476482 @default.
- W4238794773 creator A5085750307 @default.
- W4238794773 date "2017-11-03" @default.
- W4238794773 modified "2023-09-26" @default.
- W4238794773 title "A guide to Bayesian model checking for ecologists" @default.
- W4238794773 doi "https://doi.org/10.7287/peerj.preprints.3390" @default.
- W4238794773 hasPublicationYear "2017" @default.
- W4238794773 type Work @default.
- W4238794773 citedByCount "0" @default.
- W4238794773 crossrefType "posted-content" @default.
- W4238794773 hasAuthorship W4238794773A5003425680 @default.
- W4238794773 hasAuthorship W4238794773A5007167892 @default.
- W4238794773 hasAuthorship W4238794773A5031913902 @default.
- W4238794773 hasAuthorship W4238794773A5082476482 @default.
- W4238794773 hasAuthorship W4238794773A5085750307 @default.
- W4238794773 hasBestOaLocation W42387947731 @default.
- W4238794773 hasConcept C101112237 @default.
- W4238794773 hasConcept C107673813 @default.
- W4238794773 hasConcept C114289077 @default.
- W4238794773 hasConcept C119857082 @default.
- W4238794773 hasConcept C124101348 @default.
- W4238794773 hasConcept C132480984 @default.
- W4238794773 hasConcept C149782125 @default.
- W4238794773 hasConcept C154945302 @default.
- W4238794773 hasConcept C160234255 @default.
- W4238794773 hasConcept C191413810 @default.
- W4238794773 hasConcept C2776214188 @default.
- W4238794773 hasConcept C33923547 @default.
- W4238794773 hasConcept C41008148 @default.
- W4238794773 hasConceptScore W4238794773C101112237 @default.
- W4238794773 hasConceptScore W4238794773C107673813 @default.
- W4238794773 hasConceptScore W4238794773C114289077 @default.
- W4238794773 hasConceptScore W4238794773C119857082 @default.
- W4238794773 hasConceptScore W4238794773C124101348 @default.
- W4238794773 hasConceptScore W4238794773C132480984 @default.
- W4238794773 hasConceptScore W4238794773C149782125 @default.
- W4238794773 hasConceptScore W4238794773C154945302 @default.
- W4238794773 hasConceptScore W4238794773C160234255 @default.
- W4238794773 hasConceptScore W4238794773C191413810 @default.
- W4238794773 hasConceptScore W4238794773C2776214188 @default.
- W4238794773 hasConceptScore W4238794773C33923547 @default.
- W4238794773 hasConceptScore W4238794773C41008148 @default.
- W4238794773 hasLocation W42387947731 @default.
- W4238794773 hasOpenAccess W4238794773 @default.
- W4238794773 hasPrimaryLocation W42387947731 @default.
- W4238794773 hasRelatedWork W10534740 @default.
- W4238794773 hasRelatedWork W12949870 @default.
- W4238794773 hasRelatedWork W13263856 @default.
- W4238794773 hasRelatedWork W2777878 @default.
- W4238794773 hasRelatedWork W695875 @default.
- W4238794773 hasRelatedWork W760780 @default.
- W4238794773 hasRelatedWork W8021486 @default.
- W4238794773 hasRelatedWork W9329549 @default.
- W4238794773 hasRelatedWork W6606389 @default.
- W4238794773 hasRelatedWork W722847 @default.
- W4238794773 isParatext "false" @default.
- W4238794773 isRetracted "false" @default.
- W4238794773 workType "article" @default.