Matches in SemOpenAlex for { <https://semopenalex.org/work/W4238802018> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4238802018 endingPage "147" @default.
- W4238802018 startingPage "139" @default.
- W4238802018 abstract "The world’s population is on the rise and in order to feed the world in 2050, food production will need to increase by 70% [1]. As a result, it is of great importance to construct powerful predictive models for phenotype prediction based on Genotype and Environment data (so-called G by E problem). The objective of the G by E analysis is to understand how genotype and the environment jointly determine the phenotype (such as crop yield and disease resistance) of plant or animal species. In this research, deep neural networksDeep neural networks are trained and used as predictive models. Deep neural networks have become a popular tool in supervise learning due to considerable ability in training nonlinear features [5]. Recent articles have stated that the network depth is a vital factor in decreasing classification or regression error. But, deeper networks have a so-called vanishing/exploding gradients problem which makes the training and optimizing deeper networks difficult. He et al. proposed residual learning method which alleviates this problem very well and showed that deep residual networks are significantly better and more efficient than previous typical networks [5]. As a result, residual training has been used in this research to prevent gradient degradation and ease the optimization process. Finally, since it is difficult to predict the yield difference directly, two separate residual neural networks have been trained to predict yield and check yield. After training the networks, the RMSE for check yield and yield are 8.23 and 10.52, respectively, which are very good because of considerable amount of missing values, uncertainty, and complexity in the datasets." @default.
- W4238802018 created "2022-05-12" @default.
- W4238802018 creator A5033002272 @default.
- W4238802018 creator A5040137532 @default.
- W4238802018 date "2019-11-26" @default.
- W4238802018 modified "2023-09-25" @default.
- W4238802018 title "Crop Yield Prediction Using Deep Neural Networks" @default.
- W4238802018 cites W2097117768 @default.
- W4238802018 cites W2194775991 @default.
- W4238802018 cites W2919115771 @default.
- W4238802018 doi "https://doi.org/10.1007/978-3-030-30967-1_13" @default.
- W4238802018 hasPublicationYear "2019" @default.
- W4238802018 type Work @default.
- W4238802018 citedByCount "7" @default.
- W4238802018 countsByYear W42388020182020 @default.
- W4238802018 countsByYear W42388020182021 @default.
- W4238802018 countsByYear W42388020182022 @default.
- W4238802018 countsByYear W42388020182023 @default.
- W4238802018 crossrefType "book-chapter" @default.
- W4238802018 hasAuthorship W4238802018A5033002272 @default.
- W4238802018 hasAuthorship W4238802018A5040137532 @default.
- W4238802018 hasBestOaLocation W42388020182 @default.
- W4238802018 hasConcept C105795698 @default.
- W4238802018 hasConcept C108583219 @default.
- W4238802018 hasConcept C11413529 @default.
- W4238802018 hasConcept C119857082 @default.
- W4238802018 hasConcept C127413603 @default.
- W4238802018 hasConcept C134121241 @default.
- W4238802018 hasConcept C139945424 @default.
- W4238802018 hasConcept C154945302 @default.
- W4238802018 hasConcept C155512373 @default.
- W4238802018 hasConcept C191897082 @default.
- W4238802018 hasConcept C192562407 @default.
- W4238802018 hasConcept C199360897 @default.
- W4238802018 hasConcept C2780801425 @default.
- W4238802018 hasConcept C2908647359 @default.
- W4238802018 hasConcept C33923547 @default.
- W4238802018 hasConcept C41008148 @default.
- W4238802018 hasConcept C50644808 @default.
- W4238802018 hasConcept C71924100 @default.
- W4238802018 hasConcept C83546350 @default.
- W4238802018 hasConcept C88463610 @default.
- W4238802018 hasConcept C99454951 @default.
- W4238802018 hasConceptScore W4238802018C105795698 @default.
- W4238802018 hasConceptScore W4238802018C108583219 @default.
- W4238802018 hasConceptScore W4238802018C11413529 @default.
- W4238802018 hasConceptScore W4238802018C119857082 @default.
- W4238802018 hasConceptScore W4238802018C127413603 @default.
- W4238802018 hasConceptScore W4238802018C134121241 @default.
- W4238802018 hasConceptScore W4238802018C139945424 @default.
- W4238802018 hasConceptScore W4238802018C154945302 @default.
- W4238802018 hasConceptScore W4238802018C155512373 @default.
- W4238802018 hasConceptScore W4238802018C191897082 @default.
- W4238802018 hasConceptScore W4238802018C192562407 @default.
- W4238802018 hasConceptScore W4238802018C199360897 @default.
- W4238802018 hasConceptScore W4238802018C2780801425 @default.
- W4238802018 hasConceptScore W4238802018C2908647359 @default.
- W4238802018 hasConceptScore W4238802018C33923547 @default.
- W4238802018 hasConceptScore W4238802018C41008148 @default.
- W4238802018 hasConceptScore W4238802018C50644808 @default.
- W4238802018 hasConceptScore W4238802018C71924100 @default.
- W4238802018 hasConceptScore W4238802018C83546350 @default.
- W4238802018 hasConceptScore W4238802018C88463610 @default.
- W4238802018 hasConceptScore W4238802018C99454951 @default.
- W4238802018 hasLocation W42388020181 @default.
- W4238802018 hasLocation W42388020182 @default.
- W4238802018 hasOpenAccess W4238802018 @default.
- W4238802018 hasPrimaryLocation W42388020181 @default.
- W4238802018 hasRelatedWork W2995227436 @default.
- W4238802018 hasRelatedWork W3014300295 @default.
- W4238802018 hasRelatedWork W3164822677 @default.
- W4238802018 hasRelatedWork W4223943233 @default.
- W4238802018 hasRelatedWork W4225161397 @default.
- W4238802018 hasRelatedWork W4250304930 @default.
- W4238802018 hasRelatedWork W4309045103 @default.
- W4238802018 hasRelatedWork W4312200629 @default.
- W4238802018 hasRelatedWork W4360585206 @default.
- W4238802018 hasRelatedWork W4364306694 @default.
- W4238802018 isParatext "false" @default.
- W4238802018 isRetracted "false" @default.
- W4238802018 workType "book-chapter" @default.